This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358111 #13 Mar 07 2024 08:31:58 %S A358111 1,-2,1,12,-2,2,0,12,-4,6,-720,0,24,-12,24,0,-720,0,72,-48,120,30240, %T A358111 0,-1440,0,288,-240,720,0,30240,0,-4320,0,1440,-1440,5040,-1209600,0, %U A358111 60480,0,-17280,0,8640,-10080,40320,0,-1209600,0,181440,0,-86400,0,60480,-80640,362880 %N A358111 The multiplicative inverse of the coefficients of the factorially normalized Bernoulli polynomials (provided they do not vanish, otherwise by convention 0). %C A358111 The factorially normalized Bernoulli polynomials are defined inductively by: %C A358111 b(0, x) = 1, (d/dx) b(n, x) = b(n-1, x), and Integral_{x=0..1} b(n, x) = 0. %D A358111 N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, 1924. (page 31) %H A358111 Yassine El Maazouz and Jim Pitman, <a href="https://doi.org/10.48550/arxiv.2210.02027">The Bernoulli clock: probabilistic and combinatorial interpretations of the Bernoulli polynomials by circular convolution</a>, arXiv:2210.02027 [math.PR], Oct. 2022. %F A358111 T(n, k) = ([x^k] b(n, x))^(-1), provided [x^k] b(n, x) != 0, otherwise 0. %F A358111 Integral_{x=0..1} b(n, x)*b(m, x) = (-1)^(m + 1)*b(n + m, 1). [N. E. Nørlund] %F A358111 Note that n!*b(n, 1) are the Bernoulli numbers (with B_1 = 1/2). %e A358111 0] 1; %e A358111 1] -2, 1; %e A358111 2] 12, -2, 2; %e A358111 3] 0, 12, -4, 6; %e A358111 4] -720, 0, 24, -12, 24; %e A358111 5] 0, -720, 0, 72, -48, 120; %e A358111 6] 30240, 0, -1440, 0, 288, -240, 720; %e A358111 7] 0, 30240, 0, -4320, 0, 1440, -1440, 5040; %e A358111 8] -1209600, 0, 60480, 0, -17280, 0, 8640, -10080, 40320; %e A358111 9] 0, -1209600, 0, 181440, 0, -86400, 0, 60480,-80640, 362880; %p A358111 T := proc(n, k) coeff(bernoulli(n, x) / n!, x, k); ifelse(% = 0, 0, 1/%) end: %p A358111 seq(seq(T(n, k), k = 0..n), n = 0..9); %t A358111 T[n_, k_] := With[{c = Coefficient[BernoulliB[n, x]/n!, x, k]}, If[c == 0, 0, 1/c]]; %t A358111 Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Mar 07 2024, after Maple code *) %Y A358111 Cf. A227830 (column 0), A196838/A196839 (Bernoulli polynomials), A000142. %K A358111 sign,tabl %O A358111 0,2 %A A358111 _Peter Luschny_, Oct 30 2022