cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358111 The multiplicative inverse of the coefficients of the factorially normalized Bernoulli polynomials (provided they do not vanish, otherwise by convention 0).

This page as a plain text file.
%I A358111 #13 Mar 07 2024 08:31:58
%S A358111 1,-2,1,12,-2,2,0,12,-4,6,-720,0,24,-12,24,0,-720,0,72,-48,120,30240,
%T A358111 0,-1440,0,288,-240,720,0,30240,0,-4320,0,1440,-1440,5040,-1209600,0,
%U A358111 60480,0,-17280,0,8640,-10080,40320,0,-1209600,0,181440,0,-86400,0,60480,-80640,362880
%N A358111 The multiplicative inverse of the coefficients of the factorially normalized Bernoulli polynomials (provided they do not vanish, otherwise by convention 0).
%C A358111 The factorially normalized Bernoulli polynomials are defined inductively by:
%C A358111 b(0, x) = 1, (d/dx) b(n, x) = b(n-1, x), and Integral_{x=0..1} b(n, x) = 0.
%D A358111 N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, 1924. (page 31)
%H A358111 Yassine El Maazouz and Jim Pitman, <a href="https://doi.org/10.48550/arxiv.2210.02027">The Bernoulli clock: probabilistic and combinatorial interpretations of the Bernoulli polynomials by circular convolution</a>, arXiv:2210.02027 [math.PR], Oct. 2022.
%F A358111 T(n, k) = ([x^k] b(n, x))^(-1), provided [x^k] b(n, x) != 0, otherwise 0.
%F A358111 Integral_{x=0..1} b(n, x)*b(m, x) = (-1)^(m + 1)*b(n + m, 1). [N. E. Nørlund]
%F A358111 Note that n!*b(n, 1) are the Bernoulli numbers (with B_1 = 1/2).
%e A358111 0]        1;
%e A358111 1]       -2,        1;
%e A358111 2]       12,       -2,     2;
%e A358111 3]        0,       12,    -4,      6;
%e A358111 4]     -720,        0,    24,    -12,     24;
%e A358111 5]        0,     -720,     0,     72,    -48,   120;
%e A358111 6]    30240,        0, -1440,      0,    288,  -240,   720;
%e A358111 7]        0,    30240,     0,  -4320,      0,  1440, -1440,   5040;
%e A358111 8] -1209600,        0, 60480,      0, -17280,     0,  8640, -10080, 40320;
%e A358111 9]        0, -1209600,     0, 181440,      0, -86400,    0,  60480,-80640, 362880;
%p A358111 T := proc(n, k) coeff(bernoulli(n, x) / n!, x, k); ifelse(% = 0, 0, 1/%) end:
%p A358111 seq(seq(T(n, k), k = 0..n), n = 0..9);
%t A358111 T[n_, k_] := With[{c = Coefficient[BernoulliB[n, x]/n!, x, k]}, If[c == 0, 0, 1/c]];
%t A358111 Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Mar 07 2024, after Maple code *)
%Y A358111 Cf. A227830 (column 0), A196838/A196839 (Bernoulli polynomials), A000142.
%K A358111 sign,tabl
%O A358111 0,2
%A A358111 _Peter Luschny_, Oct 30 2022