A358112 Table read by rows. A statistic of permutations of the multiset {1,1,2,2,...,n,n}.
1, 5, 1, 47, 42, 1, 641, 1659, 219, 1, 11389, 72572, 28470, 968, 1, 248749, 3610485, 3263402, 357746, 4017, 1, 6439075, 204023334, 371188155, 95559940, 3853617, 16278, 1, 192621953, 12989570167, 43844432805, 22448025251, 2216662051, 38270373, 65399, 1
Offset: 1
Examples
[n\d] 0 1 2 3 4 5 6 ----------------------------------------------------------------------------- [1] 1; [2] 5, 1; [3] 47, 42, 1; [4] 641, 1659, 219, 1; [5] 11389, 72572, 28470, 968, 1; [6] 248749, 3610485, 3263402, 357746, 4017, 1; [7] 6439075, 204023334, 371188155, 95559940, 3853617, 16278, 1 [8] 192621953, 12989570167, 43844432805, 22448025251, 2216662051, 38270373, 65399, 1
Links
- Yassine El Maazouz and Jim Pitman, The Bernoulli clock: probabilistic and combinatorial interpretations of the Bernoulli polynomials by circular convolution, arXiv:2210.02027 [math.PR], Oct. 2022.
Programs
-
Maple
P := (n, x) -> (2*n)!*add(add(binomial(n, k)*binomial(n-k, j)* (-1)^(n-k-j)*max(x - k, 0)^(2*n - j)/(2*n - j)!, j = 0..n-k), k = 0..n): Trow := n -> seq(P(n, k+1) - P(n, k), k = 0..n-1): seq(print(Trow(n)), n = 1..8);
Formula
T(n, k) = P(n, k+1) - P(n, k), where P(n, x) = (2*n)!*Sum_{k=0..n} Sum_{j=0..n-k} binomial(n, k)*binomial(n-k, j)*(-1)^(n-k-j)*max(x - k, 0)^(2*n - j)/(2*n - j)!.
Comments