This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358125 #36 Dec 20 2022 11:29:32 %S A358125 0,1,1,3,4,3,7,10,10,7,15,22,24,22,15,31,46,52,52,46,31,63,94,108,112, %T A358125 108,94,63,127,190,220,232,232,220,190,127,255,382,444,472,480,472, %U A358125 444,382,255,511,766,892,952,976,976,952,892,766,511,1023,1534,1788,1912,1968,1984,1968,1912,1788,1534,1023 %N A358125 Triangle read by rows: T(n, k) = 2^n - 2^(n-k-1) - 2^k, 0 <= k <= n-1. %C A358125 T(n, k) is the expanded number of player-reduced static games within an n-player two-strategy game scenario in which one player (the "standpoint") faces a specific combination of other players' individual strategies with the possibility of anti-coordination between them -- the total number of such combinations is 2^(n-1). The value of k represents the number of other players who (are expected to) agree on one of the two strategies in S, while the other n-k-1 choose the other strategy; the standpoint player is not included. %F A358125 T(n, k) = 2^n - 2^(n-k-1) - 2^k. %F A358125 Sum_{k=0..n-1} T(n,k)*binomial(n-1,k) = 2*A005061(n-1) %e A358125 Triangle begins: %e A358125 0; %e A358125 1, 1; %e A358125 3, 4, 3; %e A358125 7, 10, 10, 7; %e A358125 15, 22, 24, 22, 15; %e A358125 31, 46, 52, 52, 46, 31; %e A358125 63, 94, 108, 112, 108, 94, 63; %e A358125 127, 190, 220, 232, 232, 220, 190, 127; %e A358125 255, 382, 444, 472, 480, 472, 444, 382, 255; %e A358125 511, 766, 892, 952, 976, 976, 952, 892, 766, 511; %e A358125 1023, 1534, 1788, 1912, 1968, 1984, 1968, 1912, 1788, 1534, 1023; %e A358125 2047, 3070, 3580, 3832, 3952, 4000, 4000, 3952, 3832, 3580, 3070, 2047; %e A358125 ... %p A358125 T := n -> seq(2^n - 2^(n - k - 1) - 2^k, k = 0 .. n - 1); %p A358125 seq(T(n), n=1..12); %t A358125 T[n_, k_] := 2^n - 2^(n - k - 1) - 2^k; Table[T[n, k], {n, 1, 11}, {k, 0, n - 1}] // Flatten (* _Amiram Eldar_, Dec 20 2022 *) %Y A358125 Column k=0 gives A000225(n-1). %Y A358125 Column k=1 gives A033484(n-2). %Y A358125 Column k=2 gives A053208(n-3). %Y A358125 Cf. A005061, A359200. %K A358125 nonn,easy,tabl %O A358125 1,4 %A A358125 _Ambrosio Valencia-Romero_, Dec 20 2022