This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358127 #14 Nov 02 2022 11:53:24 %S A358127 1,3,4,5,5,5,5,7,8,8,8,9,9,11,12,14,14,14,14,14,14,15,15,15,16,16,18, %T A358127 19,20,21,22,22,23,23,23,23,23,24,24,26,27,29,29,30,32,32,33,35,36,36, %U A358127 37,37,37,37,38,38,39,39,39,39,40,40,42,42,43,43,43,44,45,45,48,48,48,48,50,50,50,50 %N A358127 a(n) is the cardinality of the set of pairwise gcd's of {prime(1)+1, ..., prime(n)+1}. %e A358127 For n = 3 initial set is {2+1, 3+1, 5+1} and after applying gcd for each distinct pair of elements we get {1, 2, 3} set with cardinality of a(3) = 3. %o A358127 (Python) %o A358127 from sympy import nextprime %o A358127 from math import gcd %o A358127 from itertools import combinations %o A358127 pr, terms = [2,3], [] %o A358127 for i in range(100): %o A358127 terms.append(len(set([gcd(t[0]+1, t[1]+1) for t in combinations(pr,2)]))) %o A358127 pr.append(nextprime(pr[-1])) %o A358127 print(terms) %o A358127 (Python) %o A358127 from math import gcd %o A358127 from itertools import count, islice %o A358127 from sympy import prime %o A358127 def A358127_gen(): # generator of terms %o A358127 a, b = [3], set() %o A358127 for n in count(2): %o A358127 q = prime(n)+1 %o A358127 b |= set(gcd(p,q) for p in a) %o A358127 yield len(b) %o A358127 a.append(q) %o A358127 A358127_list = list(islice(A358127_gen(),100)) # _Chai Wah Wu_, Nov 02 2022 %Y A358127 Cf. A008864, A356371, A214799. %K A358127 nonn %O A358127 2,2 %A A358127 _Gleb Ivanov_, Oct 30 2022