This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358134 #9 Jan 02 2023 15:25:50 %S A358134 1,2,1,2,3,2,3,1,3,1,2,3,4,3,4,2,4,2,3,4,1,4,1,3,4,1,2,4,1,2,3,4,5,4, %T A358134 5,3,5,3,4,5,2,5,2,4,5,2,3,5,2,3,4,5,1,5,1,4,5,1,3,5,1,3,4,5,1,2,5,1, %U A358134 2,4,5,1,2,3,5,1,2,3,4,5,6,5,6,4,6,4,5 %N A358134 Triangle read by rows whose n-th row lists the partial sums of the n-th composition in standard order (row n of A066099). %C A358134 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A358134 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A358134 Triangle begins: %e A358134 1 %e A358134 2 %e A358134 1 2 %e A358134 3 %e A358134 2 3 %e A358134 1 3 %e A358134 1 2 3 %e A358134 4 %e A358134 3 4 %e A358134 2 4 %e A358134 2 3 4 %e A358134 1 4 %e A358134 1 3 4 %e A358134 1 2 4 %e A358134 1 2 3 4 %t A358134 stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A358134 Join@@Table[Accumulate[stc[n]],{n,100}] %Y A358134 See link for sequences related to standard compositions. %Y A358134 First element in each row is A065120. %Y A358134 Rows are the partial sums of rows of A066099. %Y A358134 Last element in each row is A070939. %Y A358134 An adjusted version is A242628, ranked by A253565. %Y A358134 The first differences instead of partial sums are A358133. %Y A358134 The version for Heinz numbers of partitions is A358136, ranked by A358137. %Y A358134 Row sums are A359042. %Y A358134 A011782 counts compositions. %Y A358134 A351014 counts distinct runs in standard compositions. %Y A358134 A358135 gives last minus first of standard compositions. %Y A358134 Cf. A000120, A001511, A029837, A029931, A048896, A070939, A133494, A253566, A355536, A357135. %K A358134 nonn,tabf %O A358134 1,2 %A A358134 _Gus Wiseman_, Oct 31 2022