This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358135 #7 Oct 31 2022 15:23:26 %S A358135 0,0,0,0,-1,1,0,0,-2,0,-1,2,0,1,0,0,-3,-1,-2,1,-1,0,-1,3,0,1,0,2,0,1, %T A358135 0,0,-4,-2,-3,0,-2,-1,-2,2,-1,0,-1,1,-1,0,-1,4,0,1,0,2,0,1,0,3,0,1,0, %U A358135 2,0,1,0,0,-5,-3,-4,-1,-3,-2,-3,1,-2,-1,-2,0,-2 %N A358135 Difference of first and last parts of the n-th composition in standard order. %C A358135 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A358135 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %F A358135 a(n) = A001511(n) - A065120(n). %t A358135 stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A358135 Table[-First[stc[n]]+Last[stc[n]],{n,1,100}] %Y A358135 See link for sequences related to standard compositions. %Y A358135 The first and last parts are A065120 and A001511. %Y A358135 This is the first minus last part of row n of A066099. %Y A358135 The version for Heinz numbers of partitions is A243055. %Y A358135 Row sums of A358133. %Y A358135 The partial sums of standard compositions are A358134, adjusted A242628. %Y A358135 A011782 counts compositions. %Y A358135 A333766 and A333768 give max and min in standard compositions, diff A358138. %Y A358135 A351014 counts distinct runs in standard compositions. %Y A358135 Cf. A000120, A001511, A029837, A029931, A048896, A058891, A070939, A133494, A329395, A357187. %K A358135 sign %O A358135 1,9 %A A358135 _Gus Wiseman_, Oct 31 2022