This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358137 #9 Jan 02 2023 15:26:06 %S A358137 1,2,3,6,5,10,7,30,21,14,11,42,13,22,33,210,17,110,19,66,39,26,23,330, %T A358137 65,34,273,78,29,130,31,2310,51,38,85,546,37,46,57,390,41,170,43,102, %U A358137 357,58,47,2730,133,238,69,114,53,1870,95,510,87,62,59,714,61 %N A358137 Heinz number of the partial sums of the prime indices of n. %C A358137 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %F A358137 A001222(a(n)) = A001222(n). %e A358137 The terms together with their prime indices begin: %e A358137 1: {} %e A358137 2: {1} %e A358137 3: {2} %e A358137 6: {1,2} %e A358137 5: {3} %e A358137 10: {1,3} %e A358137 7: {4} %e A358137 30: {1,2,3} %e A358137 21: {2,4} %e A358137 14: {1,4} %e A358137 11: {5} %e A358137 42: {1,2,4} %e A358137 13: {6} %e A358137 22: {1,5} %e A358137 33: {2,5} %e A358137 210: {1,2,3,4} %e A358137 17: {7} %e A358137 110: {1,3,5} %t A358137 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A358137 Table[Times@@Prime/@Accumulate[primeMS[n]],{n,100}] %Y A358137 The sorted version is A325362. %Y A358137 The prime indices are rows of A358136, partial sums of rows of A112798. %Y A358137 A000040 lists the primes. %Y A358137 A000041 counts partitions, strict A000009. %Y A358137 A003963 multiplies prime indices. %Y A358137 A056239 adds up prime indices. %Y A358137 Cf. A000720, A001221, A001222, A215366, A296150, A318283, A355536, A358134. %K A358137 nonn %O A358137 1,2 %A A358137 _Gus Wiseman_, Oct 31 2022