This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358144 #26 Jun 13 2024 11:36:17 %S A358144 1,1,1,4,167,165791,19194240969 %N A358144 Number of strict closure operators on a set of n elements such that all pairs of distinct points can be separated by clopen sets. %C A358144 A closure operator is strict if the empty set is closed. %C A358144 Two distinct points x,y in X are separated by a set H if x is an element of H and y is not an element of H. %C A358144 Also the number of S_2 convexities on a set of n elements in the sense of Chepoi. %D A358144 G. M. Bergman. Lattices, Closure Operators, and Galois Connections. Springer, Cham. 2015. 173-212 in "An Invitation to General Algebra and Universal Constructions", Springer, (2015). %H A358144 Victor Chepoi, <a href="https://www.researchgate.net/publication/2407147_Separation_Of_Two_Convex_Sets_In_Convexity_Structures">Separation of Two Convex Sets in Convexity Structures</a> %H A358144 Wikipedia, <a href="https://en.wikipedia.org/wiki/Closure_operator">Closure operator</a> %e A358144 The a(3) = 4 set-systems of closed sets: %e A358144 {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}} %e A358144 {{}, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}} %e A358144 {{}, {1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}} %e A358144 {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} %t A358144 SeparatedPairQ[F_, n_] := AllTrue[ %t A358144 Subsets[Range[n], {2}], %t A358144 MemberQ[F, %t A358144 _?(H |-> With[{H1 = Complement[Range[n], H]}, %t A358144 MemberQ[F, H1] && MemberQ[H, #[[1]] %t A358144 ] && MemberQ[H1, #[[2]] %t A358144 ]])] &]; %t A358144 Table[Length@Select[Select[ %t A358144 Subsets[Subsets[Range[n]]], %t A358144 And[ %t A358144 MemberQ[#, {}], %t A358144 MemberQ[#, Range[n]], %t A358144 SubsetQ[#, Intersection @@@ Tuples[#, 2]]] & %t A358144 ], SeparatedPairQ[#, n] &] , {n, 0, 4}] %Y A358144 Cf. A334255, A358152, A356544. %K A358144 nonn,hard,more %O A358144 0,4 %A A358144 _Tian Vlasic_, Oct 31 2022 %E A358144 a(5) from _Christian Sievers_, Feb 04 2024 %E A358144 a(6) from _Christian Sievers_, Jun 13 2024