A358149 First of four consecutive primes p,q,r,s such that (2*p+q)/5 and (r+2*s)/5 are prime.
11, 1151, 33071, 33637, 55331, 57637, 75997, 90821, 97007, 100151, 112237, 118219, 123581, 141629, 154459, 160553, 165961, 199247, 212777, 222823, 288361, 289511, 293677, 319993, 329471, 331697, 336101, 361799, 364537, 375371, 381467, 437279, 437693, 442571, 444461, 457837, 475751, 490877, 540781
Offset: 1
Keywords
Examples
a(3) = 33071 is a term because 33071, 33073, 33083, 33091 are four consecutive primes with (2*33071+33073)/5 = 19843 and (33083+2*33091)/5 = 19853 prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A358155.
Programs
-
Maple
Res:= NULL: count:= 0: q:= 2: r:= 3: s:= 5: while count < 50 do p:= q; q:= r; r:= s; s:= nextprime(s); t:= (2*p+q)/5; u:= (r+2*s)/5; if (t::integer and u::integer and isprime(t) and isprime(u)) then count:= count+1; Res:= Res,p; fi od: Res;
-
Mathematica
Select[Partition[Prime[Range[45000]], 4, 1], PrimeQ[(2*#[[1]] + #[[2]])/5] && PrimeQ[(#[[3]] + 2*#[[4]])/5] &][[;; , 1]] (* Amiram Eldar, Nov 01 2022 *)
Comments