This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358152 #31 Jul 20 2024 08:10:25 %S A358152 1,1,2,8,121,18460,159273237 %N A358152 Number of strict closure operators on a set of n elements such that every point and every closed set not containing that point can be separated by clopen sets. %C A358152 A closure operator is strict if the empty set is closed. %C A358152 A point p in X and a subset A of X not containing p are separated by a set H if p is an element of H and A is a subset of X\H. %C A358152 Also the number of S_3 convexities on a set of n elements in the sense of Chepoi. %D A358152 G. M. Bergman, "Lattices, Closure Operators, and Galois Connections", pp. 173-212 in "An Invitation to General Algebra and Universal Constructions", Springer, (2015). %H A358152 Victor Chepoi, <a href="https://www.researchgate.net/publication/2407147_Separation_Of_Two_Convex_Sets_In_Convexity_Structures">Separation of Two Convex Sets in Convexity Structures</a> %e A358152 The a(3) = 8 set-systems of closed sets: %e A358152 {{}, {1, 2, 3}} %e A358152 {{}, {1}, {2, 3}, {1, 2, 3}} %e A358152 {{}, {2}, {1, 3},{1, 2, 3}} %e A358152 {{}, {3}, {1, 2}, {1, 2, 3}} %e A358152 {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}} %e A358152 {{}, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}} %e A358152 {{}, {1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}} %e A358152 {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} %t A358152 SeparatedPairQ[F_, n_] := AllTrue[ %t A358152 Flatten[(x |-> ({x, #} & /@ Select[F, FreeQ[#, x] &])) /@ Range[n], %t A358152 1], MemberQ[F, %t A358152 _?(H |-> With[{H1 = Complement[Range[n], H]}, %t A358152 MemberQ[F, H1] && MemberQ[H, #[[1]] %t A358152 ] && SubsetQ[H1, #[[2]] %t A358152 ]])]&]; %t A358152 Table[Length@Select[Select[ %t A358152 Subsets[Subsets[Range[n]]], %t A358152 And[ %t A358152 MemberQ[#, {}], %t A358152 MemberQ[#, Range[n]], %t A358152 SubsetQ[#, Intersection @@@ Tuples[#, 2]]] & %t A358152 ], SeparatedPairQ[#, n] &], {n, 0, 4}] %Y A358152 Cf. A334255, A358144, A356544. %K A358152 nonn,hard,more %O A358152 0,3 %A A358152 _Tian Vlasic_, Nov 01 2022 %E A358152 a(5)-a(6) from _Christian Sievers_, Jul 20 2024