A358155 First of four consecutive primes p,q,r,s such that (2*p+q)/5, (q+r)/10 and (r+2*s)/5 are prime.
11, 2696717, 3500381, 3989903, 4515113, 8164073, 12451013, 18793013, 23567267, 24057713, 30312409, 36391853, 44569853, 45657881, 53442343, 54721253, 54944761, 56652203, 63993803, 76763081, 90662303, 92889127, 94670143, 105790973, 106339481, 108988223, 117213871, 118802533, 130741007, 145543523
Offset: 1
Keywords
Examples
a(3) = 3500381 is a term because 3500381, 3500383, 3500407, 3500429 are four consecutive primes with (2*3500381 + 3500383)/5 = 2100229, (3500383 + 3500407)/10 = 700079, and (3500407 + 2*3500429)/5 = 2100253 all prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..250
Programs
-
Maple
Res:= NULL: count:= 0: q:= 2: r:= 3: s:= 5: while count < 40 do p:= q; q:= r; r:= s; s:= nextprime(s); t:= (2*p+q)/5; u:= (q+r)/10; v:= (r+2*s)/5; if (t::integer and u::integer and v::integer and isprime(t) and isprime(u) and isprime(v)) then count:= count+1; Res:= Res, p; fi od: Res;
-
Mathematica
Select[Partition[Prime[Range[8.3*10^6]], 4, 1], PrimeQ[(2*#[[1]] + #[[2]])/5] && PrimeQ[(#[[2]] + #[[3]])/10] && PrimeQ[(#[[3]] + 2*#[[4]])/5] &][[;; , 1]] (* Amiram Eldar, Nov 01 2022 *)
Comments