This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358158 #13 Oct 15 2023 09:26:50 %S A358158 1,0,4,238,31992,9390096,4755878928,3802500283680,4720879431568800, %T A358158 8379987002639042400,20346893722025317036800 %N A358158 a(n) is the hafnian of the 2n X 2n symmetric matrix defined by M[i,j] = floor(i*j/3). %C A358158 The matrix M(n) is the n-th principal submatrix of the rectangular array A143974. %H A358158 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hafnian">Hafnian</a> %H A358158 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_matrix">Symmetric matrix</a> %e A358158 a(2) = 4: %e A358158 0 0 1 1 %e A358158 0 1 2 2 %e A358158 1 2 3 4 %e A358158 1 2 4 5 %t A358158 M[i_, j_, n_]:=Part[Part[Table[Floor[r*c/3], {r, n}, {c, n}], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0] %o A358158 (PARI) tm(n) = matrix(n, n, i, j, (i*j)\3); %o A358158 a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ _Michel Marcus_, May 02 2023 %Y A358158 Cf. A143974. %Y A358158 Cf. A000212 (matrix element M[n,n]), A181286 (trace of M(n)), A358157 (permanent of M(n)). %K A358158 nonn,hard,more %O A358158 0,3 %A A358158 _Stefano Spezia_, Nov 01 2022 %E A358158 a(6) from _Michel Marcus_, May 02 2023 %E A358158 a(7)-a(10) from _Pontus von Brömssen_, Oct 15 2023