This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358163 #10 Nov 02 2022 11:53:20 %S A358163 1,0,1,30,1272,113224,18615680,4299553536,1507609286784, %T A358163 781464165813504,525599814806986752,473934337123421786112, %U A358163 567876971785035135320064,837723761443461191423754240,1549608938859438129393893376000,3582000047767392376356107059200000,9838495669776145718724862743674880000 %N A358163 a(n) is the permanent of the n X n matrix M(n) that is defined by M[i,j] = i*j - ceiling(i*j/3). %C A358163 The matrix M(n) is the n-th principal submatrix of the rectangular array A143979. %C A358163 det(M(0)) = 1, det(M(2)) = -1, det(M(3)) = 2, and otherwise det(M(n)) = 0. %e A358163 a(5) = 113224: %e A358163 0 1 2 2 3 %e A358163 1 2 4 5 6 %e A358163 2 4 6 8 10 %e A358163 2 5 8 10 13 %e A358163 3 6 10 13 16 %t A358163 a[n_]:=Permanent[Table[i*j-Ceiling[i*j/3],{i,n},{j,n}]]; Join[{1},Array[a,16]] %o A358163 (Python) %o A358163 from fractions import Fraction %o A358163 from sympy import Matrix %o A358163 def A358163(n): return Matrix(n,n,[i*j-Fraction(i*j,3).__ceil__() for i in range(1,n+1) for j in range(1,n+1)]).per() if n else 1 # _Chai Wah Wu_, Nov 02 2022 %Y A358163 Cf. A143979. %Y A358163 Cf. A030511 (matrix element M[n-1,n-1]), A358164 (hafnian of M(2*n)). %K A358163 nonn %O A358163 0,4 %A A358163 _Stefano Spezia_, Nov 01 2022