cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358165 Irregular triangular array read by rows. T(n,k) is the number of direct sum decompositions V_1 + V_2 + ... + V_m = GF(2)^n with the dimensions of the V_i corresponding to the k-th partition of n in canonical ordering, n >= 0, 1 <= k <= A000041(n).

This page as a plain text file.
%I A358165 #10 Apr 19 2024 17:49:30
%S A358165 1,1,1,3,1,28,28,1,120,280,1680,840,1,496,9920,29760,138880,277760,
%T A358165 83328,1,2016,166656,499968,357120,19998720,19998720,15554560,
%U A358165 139991040,139991040,27998208,1,8128,2731008,8193024,48377856,1354579968,1354579968,2902671360,13545799680,81274798080,40637399040,126427463680,379282391040,227569434624,32509919232
%N A358165 Irregular triangular array read by rows.  T(n,k) is the number of direct sum decompositions V_1 + V_2 + ... + V_m = GF(2)^n with the dimensions of the V_i corresponding to the k-th partition of n in canonical ordering, n >= 0, 1 <= k <= A000041(n).
%H A358165 David Ellerman, <a href="http://arxiv.org/abs/1603.07619">The number of direct-sum decompositions of a finite vector space</a>, arXiv:1603.07619 [math.CO], 2016.
%H A358165 Wikipedia, <a href="http://en.wikipedia.org/wiki/Orderings_of partitions">Orderings of partitions</a>
%F A358165 For i = 1,...,n let a_i be the number of parts of size i in the k-th partition of n in canonical ordering.  T(n,k) = A002884(n)/Product_{j=1..n} A002884(j)^a_j*a_j!.
%e A358165 Triangle begins:
%e A358165   1;
%e A358165   1;
%e A358165   1,   3;
%e A358165   1,  28,   28;
%e A358165   1, 120,  280,  1680,    840;
%e A358165   1, 496, 9920, 29760, 138880, 277760, 83328;
%e A358165   ...
%e A358165 T(4,3) = 280.  For n=4 the five partitions in canonical ordering are {4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}.  The third partition in this order is {2,2}.  So T(4,3) = A002884(4)/(A002884(2)^2*2!) = 280.
%t A358165 dsd2[n_, signature_] := Product[2^n - 2^i, {i, 0, n - 1}]/ Product[Product[2^k - 2^i, {i, 0, k - 1}]^signature[[k]]*signature[[k]]!, {k, 1, n}];Table[Map[dsd2[n, #] &,Map[Table[Count[#, i], {i, 1, n}] &, IntegerPartitions[n]]], {n, 0,6}] // Grid
%Y A358165 Cf. A270880, A270881 (row sums), A279038, A080575, A000041, A002884, A053601 (main diagonal).
%K A358165 nonn,tabf
%O A358165 0,4
%A A358165 _Geoffrey Critzer_, Nov 01 2022