This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358168 #30 Nov 06 2022 01:40:20 %S A358168 0,14,131,1024,10381,100881,1014748,10001558,100246289,1000943528, %T A358168 10010107437 %N A358168 First n-digit number to occur in Van Eck's Sequence (A181391). %C A358168 a(6)-a(7) from Chuck Gaydos. %e A358168 a(2) = 14 because 14 is the first 2-digit number occurring in A181391. %t A358168 nn = 2^20; q[_] = False; q[0] = True; a[_] = 0; c[_] = -1; c[0] = 2; m = 1; {0}~Join~Rest@ Reap[Do[j = c[m]; a[n] = m; c[m] = n; m = 0; If[j > 0, m = n - j]; If[! q[#2], Sow[#1]; q[#2] = True] & @@ {a[n], IntegerLength[a[n]]}, {n, 3, nn}] ][[-1, -1]] (* _Michael De Vlieger_, Nov 05 2022 *) %o A358168 (Python) %o A358168 from itertools import count %o A358168 def A358168(n): %o A358168 b, bdict, k = 0, {0:(1,)},10**(n-1) if n > 1 else 0 %o A358168 for m in count(2): %o A358168 if b >= k: %o A358168 return b %o A358168 if len(l := bdict[b]) > 1: %o A358168 b = m-1-l[-2] %o A358168 if b in bdict: %o A358168 bdict[b] = (bdict[b][-1],m) %o A358168 else: %o A358168 bdict[b] = (m,) %o A358168 else: %o A358168 b = 0 %o A358168 bdict[0] = (bdict[0][-1],m) # _Chai Wah Wu_, Nov 05 2022 %Y A358168 Cf. A181391, A358180. %K A358168 nonn,base,hard,more %O A358168 1,2 %A A358168 _G. L. Honaker, Jr._, Nov 01 2022 %E A358168 a(8)-a(10) from _Chai Wah Wu_, Nov 05 2022 %E A358168 a(11) from _Martin Ehrenstein_, Nov 05 2022