This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358169 #8 Nov 02 2022 11:08:01 %S A358169 1,2,1,1,3,1,2,4,1,1,1,2,1,1,3,5,1,1,2,6,1,4,2,2,1,1,1,1,7,1,2,1,8,1, %T A358169 1,3,2,3,1,5,9,1,1,1,2,3,1,1,6,2,1,1,1,1,4,10,1,2,2,11,1,1,1,1,1,2,4, %U A358169 1,7,3,2,1,1,2,1,12,1,8,2,5,1,1,1,3 %N A358169 Row n lists the first differences plus one of the prime indices of n with 1 prepended. %C A358169 Every nonempty composition appears as a row exactly once. %C A358169 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Here this multiset is regarded as a sequence in weakly increasing order. %C A358169 Also the reversed augmented differences of the integer partition with Heinz number n, where the augmented differences aug(q) of a sequence q of length k are given by aug(q)_i = q_i - q_{i+1} + 1 if i < k and aug(q)_k = q_k, and the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The non-reversed version is A355534. %H A358169 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A358169 Triangle begins: %e A358169 2: 1 %e A358169 3: 2 %e A358169 4: 1 1 %e A358169 5: 3 %e A358169 6: 1 2 %e A358169 7: 4 %e A358169 8: 1 1 1 %e A358169 9: 2 1 %e A358169 10: 1 3 %e A358169 11: 5 %e A358169 12: 1 1 2 %e A358169 13: 6 %e A358169 14: 1 4 %e A358169 15: 2 2 %e A358169 16: 1 1 1 1 %e A358169 17: 7 %e A358169 18: 1 2 1 %e A358169 19: 8 %e A358169 20: 1 1 3 %t A358169 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A358169 Table[Differences[Prepend[primeMS[n],1]]+1,{n,30}] %Y A358169 Row-lengths are A001222. %Y A358169 The first term of each row is A055396. %Y A358169 Row-sums are A252464. %Y A358169 The rows appear to be ranked by A253566. %Y A358169 Another variation is A287352. %Y A358169 Constant rows have indices A307824. %Y A358169 The Heinz numbers of the rows are A325351. %Y A358169 Strict rows have indices A325366. %Y A358169 Row-minima are A355531, also A355524 and A355525. %Y A358169 Row-maxima are A355532, non-augmented A286470, also A355526. %Y A358169 Reversing rows gives A355534. %Y A358169 The non-augmented version A355536, also A355533. %Y A358169 A112798 lists prime indices, sum A056239. %Y A358169 Cf. A124010, A243055, A243056, A325352, A325390, A355523, A355528. %K A358169 nonn,tabf %O A358169 2,2 %A A358169 _Gus Wiseman_, Nov 01 2022