cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358173 First differences of A286708.

Original entry on oeis.org

36, 28, 8, 36, 52, 4, 16, 9, 63, 36, 68, 8, 32, 9, 43, 16, 76, 72, 27, 1, 108, 16, 64, 36, 68, 4, 28, 89, 36, 27, 4, 69, 71, 27, 29, 20, 72, 77, 47, 32, 128, 36, 36, 136, 8, 56, 25, 91, 188, 8, 188, 92, 9, 99, 4, 40, 144, 28, 109, 62, 49, 64, 49, 18, 97, 11, 81
Offset: 1

Views

Author

Michael De Vlieger, Nov 01 2022

Keywords

Comments

Consider the sequence of powerful numbers A001694, superset of A246547, the sequence of composite prime powers. Let s = A001694(k) such that omega(s) > 1 be followed by t = A001694(k+1) such that omega(t) = 1.
Since A286708 = A001694 \ A246547, prime powers t are missing in A286708. We consider s = A286708(j) and note that the difference A286708(j+1) - A286708(j) > A001694(k+1) - A001694(k).
Therefore we see a subset S containing s in A286708 that plots "out of place" with respect to the complementary subset R = A286708 \ S; some of this subset S exceeds the maxima of R in the scatterplot of this sequence. The plot of the R resembles the scatterplot of A001694.

Examples

			The number 36 is the smallest powerful number that is not a prime power; the next powerful number that is not a prime power is 72, and their difference is 36, hence a(1) = 36.
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 2^25}, Differences@ Select[Rest@ Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], ! PrimePowerQ[#] &]]
  • Python
    from math import isqrt
    from sympy import integer_nthroot, primepi, mobius
    def A358173(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x+1+sum(primepi(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length())), 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x,3)[0])-l
            return c
        return -(a:=bisection(f,n,n))+bisection(lambda x:f(x)+1,a,a) # Chai Wah Wu, Sep 10 2024