This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358178 #16 Dec 16 2022 09:00:57 %S A358178 0,1,1,1,1,2,2,2,3,4,4,4,4,4,4,5,6,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,10, %T A358178 10,11,12,12,12,13,14,14,15,15,15,15,16,16,16,16,16,17,17,17,17,17,17, %U A358178 17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,18,18,18,18,18,18,18,18,18 %N A358178 a(n) is the cardinality of the set of distinct pairwise gcd's of {1! + 1, ..., n! + 1}. %e A358178 For n = 6 initial set is {1+1, 2+1, 6+1, 24+1, 120+1, 720+1} and after applying gcd for each distinct pair of elements we get {1, 7} set with cardinality of a(6) = 2. %o A358178 (Python) %o A358178 from math import gcd, factorial %o A358178 from itertools import combinations %o A358178 f, terms = [2,], [] %o A358178 for i in range(2,100): %o A358178 f.append(factorial(i)+1) %o A358178 terms.append(len(set([gcd(*t) for t in combinations(f, 2)]))) %o A358178 print(terms) %o A358178 (Python) %o A358178 from math import gcd %o A358178 from itertools import count, islice %o A358178 def A358178_gen(): # generator of terms %o A358178 m, f, g = 1, [], set() %o A358178 for n in count(1): %o A358178 m *= n %o A358178 g |= set(gcd(d,m+1) for d in f) %o A358178 f.append(m+1) %o A358178 yield len(g) %o A358178 A358178_list = list(islice(A358178_gen(),20)) # _Chai Wah Wu_, Dec 15 2022 %Y A358178 Cf. A038507, A358127, A356371, A214799. %K A358178 nonn %O A358178 1,6 %A A358178 _Gleb Ivanov_, Nov 02 2022