This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358194 #6 Jan 01 2023 19:30:53 %S A358194 1,1,1,1,1,0,1,1,1,0,1,1,0,1,1,1,0,0,1,1,0,1,1,0,1,1,1,0,0,1,1,1,1,0, %T A358194 1,1,0,1,1,0,1,1,1,0,0,0,1,1,1,0,1,1,1,1,1,0,1,1,0,1,1,0,1,1,1,0,0,0, %U A358194 1,1,1,1,0,1,1,1,2,1,0,1,1,1,1,1,0,1,1,0,1,1,0,1,1 %N A358194 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with partial sums summing to k, where k ranges from n to n(n+1)/2. %C A358194 The partial sums of a sequence (a, b, c, ...) are (a, a+b, a+b+c, ...). %e A358194 Triangle begins: %e A358194 1 %e A358194 1 %e A358194 1 1 %e A358194 1 0 1 1 %e A358194 1 0 1 1 0 1 1 %e A358194 1 0 0 1 1 0 1 1 0 1 1 %e A358194 1 0 0 1 1 1 1 0 1 1 0 1 1 0 1 1 %e A358194 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 %e A358194 1 0 0 0 1 1 1 1 0 1 1 1 2 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 %e A358194 For example, the T(15,59) = 5 partitions are: (8,2,2,2,1), (7,3,3,1,1), (6,5,2,1,1), (4,3,2,2,2,2), (3,3,3,3,2,1). %t A358194 Table[Length[Select[IntegerPartitions[n],Total[Accumulate[#]]==k&]],{n,0,8},{k,n,n*(n+1)/2}] %Y A358194 Row sums are A000041. %Y A358194 The version for compositions is A053632. %Y A358194 Row lengths are A152947. %Y A358194 The version for reversed partitions is A264034. %Y A358194 A048793 = partial sums of reversed standard compositions, sum A029931. %Y A358194 A358134 = partial sums of standard compositions, sum A359042. %Y A358194 A358136 = partial sums of prime indices, sum A318283. %Y A358194 A359361 = partial sums of reversed prime indices, sum A304818. %Y A358194 Cf. A000009, A325362, A358137, A359397. %K A358194 nonn,tabf %O A358194 0,77 %A A358194 _Gus Wiseman_, Dec 31 2022