cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358195 Heinz number of the partial sums plus one of the reversed first differences of the prime indices of n.

This page as a plain text file.
%I A358195 #5 Dec 24 2022 11:15:30
%S A358195 1,1,1,2,1,3,1,4,2,5,1,9,1,7,3,8,1,6,1,25,5,11,1,27,2,13,4,49,1,15,1,
%T A358195 16,7,17,3,18,1,19,11,125,1,35,1,121,9,23,1,81,2,10,13,169,1,12,5,343,
%U A358195 17,29,1,75,1,31,25,32,7,77,1,289,19,21,1,54,1,37
%N A358195 Heinz number of the partial sums plus one of the reversed first differences of the prime indices of n.
%C A358195 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%C A358195 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A358195 The partial sums of first differences of a sequence telescope to "rest minus first", leading to the formula.
%F A358195 If n = Product_{i=1..k} prime(x_i) then a(n) = Product_{i=1..k-1} prime(x_k-x_{k-i}+1).
%e A358195 The prime indices of 36 are (1,1,2,2), differences (0,1,0), reversed (0,1,0), partial sums (0,1,1), plus one (1,2,2), Heinz number 18, so a(36) = 18.
%t A358195 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A358195 osq[q_]:=1+Accumulate[Reverse[Differences[q]]];
%t A358195 Table[Times@@Prime/@osq[primeMS[n]],{n,20}]
%Y A358195 The even bisection is A241916.
%Y A358195 The unreversed version is A246277.
%Y A358195 Sum of prime indices of a(n) is A326844(n) + A001222(n) - 1.
%Y A358195 A048793 gives partial sums of reversed standard comps, Heinz number A019565.
%Y A358195 A112798 list prime indices, sum A056239.
%Y A358195 Cf. A005940, A161511, A253565, A358137, A358170.
%K A358195 nonn
%O A358195 1,4
%A A358195 _Gus Wiseman_, Dec 23 2022