This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358195 #5 Dec 24 2022 11:15:30 %S A358195 1,1,1,2,1,3,1,4,2,5,1,9,1,7,3,8,1,6,1,25,5,11,1,27,2,13,4,49,1,15,1, %T A358195 16,7,17,3,18,1,19,11,125,1,35,1,121,9,23,1,81,2,10,13,169,1,12,5,343, %U A358195 17,29,1,75,1,31,25,32,7,77,1,289,19,21,1,54,1,37 %N A358195 Heinz number of the partial sums plus one of the reversed first differences of the prime indices of n. %C A358195 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A358195 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A358195 The partial sums of first differences of a sequence telescope to "rest minus first", leading to the formula. %F A358195 If n = Product_{i=1..k} prime(x_i) then a(n) = Product_{i=1..k-1} prime(x_k-x_{k-i}+1). %e A358195 The prime indices of 36 are (1,1,2,2), differences (0,1,0), reversed (0,1,0), partial sums (0,1,1), plus one (1,2,2), Heinz number 18, so a(36) = 18. %t A358195 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A358195 osq[q_]:=1+Accumulate[Reverse[Differences[q]]]; %t A358195 Table[Times@@Prime/@osq[primeMS[n]],{n,20}] %Y A358195 The even bisection is A241916. %Y A358195 The unreversed version is A246277. %Y A358195 Sum of prime indices of a(n) is A326844(n) + A001222(n) - 1. %Y A358195 A048793 gives partial sums of reversed standard comps, Heinz number A019565. %Y A358195 A112798 list prime indices, sum A056239. %Y A358195 Cf. A005940, A161511, A253565, A358137, A358170. %K A358195 nonn %O A358195 1,4 %A A358195 _Gus Wiseman_, Dec 23 2022