A358200 Frequency ranking position of the ratio r(n) between consecutive prime gaps, among all previous ratios {r(i) : 2 < i < n, r(i) = (prime(i) - prime(i-1))/(prime(i-1) - prime(i-2))}. If the ratio r(n) is not among previous ratios, then a(n)=n.
4, 2, 6, 1, 2, 1, 10, 11, 12, 13, 2, 1, 6, 6, 5, 7, 7, 2, 7, 5, 7, 25, 2, 1, 2, 1, 2, 31, 32, 4, 6, 35, 36, 6, 7, 6, 4, 7, 7, 12, 9, 2, 2, 47, 6, 5, 1, 2, 5, 4, 9, 55, 5, 4, 4, 7, 7, 1, 8, 63, 10, 1, 2, 14, 68, 69, 9, 2, 5, 14, 74, 4, 6, 5, 11, 1, 2, 81, 9, 9, 9, 8, 6, 4, 10, 1, 1, 2, 7, 6, 1, 2, 1, 3, 2, 99, 100, 6, 19, 16
Offset: 4
Keywords
Examples
In the table below for the first terms, the columns are: index n, primes(n), consecutive prime-gaps ratio r(n), previous sorted ratios psr(n), and a(n). n prime(n) r(n) psr(n) a(n) 1 2 - {} - 2 3 - {} - 3 5 2 {} - 4 7 1 {2} 4 5 11 2 {1, 2} 2 6 13 1/2 {2, 1} 6 7 17 2 {2, 1/2, 1} 1 8 19 1/2 {2, 1/2, 1} 2 9 23 2 {2, 1/2, 1} 1 10 29 3/2 {2, 1/2, 1} 10 11 31 1/3 {2, 1/2, 1, 3/2} 11 12 37 3 {2, 1/2, 1/3, 1, 3/2} 12 13 41 2/3 {2, 1/2, 1/3, 1, 3/2, 3} 13 14 43 1/2 {2, 1/2, 1/3, 2/3, 1, 3/2, 3} 2 a(4), a(6), a(10), a(11), a(12) and a(13) are respectively 4, 6, 10, 11, 12 and 13 because the corresponding ratios 1, 1/2, 3/2, 1/3, 3 and 2/3 are ratios that appear for the first time. a(5) = 2 because the corresponding ratio r(5)=2 is at the second position in the ordered set of previous ratios psr(5)={1, 2}. a(9) = 1 because the corresponding ratio r(9)=2 is at the first position in the ordered set of previous ratios psr(7)={2, 1/2, 1}.
Programs
-
Mathematica
p[n_]:= Prime[n]; (* consecutive prime-gaps ratio *) r[n_]:= (p[n] - p[n - 1])/(p[n - 1] - p[n - 2]); (* sorted ratios according to increasing frequency and decreasing value *) fracs[n_]:= Transpose[SortBy[Tally[r[Range[3, n]]], {-#[[2]] &, #[[1]] &}]][[1]]; SetAttributes[fracs, Listable]; (* Position of the new ratio r[j] in previous list, or j if not present *) a[j_] := Append[Position[fracs[j - 1], r[j]], {j}] // First // First; SetAttributes[a, Listable]; (* First 100 terms starting from n=4 *) a[Range[4,103]]
Comments