This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358205 #41 Jun 11 2023 14:22:27 %S A358205 0,2,1,13,19,7,61,331,169,1141,6487,898,20581,315826,59947,296143, %T A358205 1890466,6141994,1359025,49188715,20490901,264422320,178328878, %U A358205 1340590345,9476420614,5989636213,72238539832,103619599441,668478672403,794002910839,417430195531 %N A358205 a(n) is the least number k such that 1 + 2*k + 3*k^2 has exactly n prime divisors, counted with multiplicity. %C A358205 a(n) is the least k such that A001222(A056109(k)) = n. %H A358205 Gerry Martens, <a href="/A358205/b358205.txt">Table of n, a(n) for n = 0..40</a> %e A358205 a(5) = 7 because 1 + 2*7 + 3*7^2 = 162 = 2*3^4 has 5 prime divisors, counted with multiplicity. %e A358205 From _Jon E. Schoenfield_, Nov 05 2022: (Start) %e A358205 Let m = 1 + 2*k + 3*k^2. Since no such number m is divisible by 2^2, 5, or 7, the smallest number m having a given number of prime factors counted with multiplicity will tend to have a large number of 3's among its prime factors: %e A358205 . %e A358205 n k = a(n) m = 1 + 2*k + 3*k^2 %e A358205 -- ------------ ----------------------------------------------------- %e A358205 0 0 1 %e A358205 1 2 17 (prime) %e A358205 2 1 6 = 2 * 3 %e A358205 3 13 534 = 2 * 3 * 89 %e A358205 4 19 1122 = 2 * 3 * 11 * 17 %e A358205 5 7 162 = 2 * 3^4 %e A358205 6 61 11286 = 2 * 3^3 * 11 * 19 %e A358205 7 331 329346 = 2 * 3^4 * 19 * 107 %e A358205 8 169 86022 = 2 * 3^6 * 59 %e A358205 9 1141 3907926 = 2 * 3^5 * 11 * 17 * 43 %e A358205 10 6487 126256482 = 2 * 3^5 * 11^2 * 19 * 113 %e A358205 11 898 2421009 = 3^10 * 41 %e A358205 12 20581 1270773846 = 2 * 3^9 * 19 * 1699 %e A358205 13 315826 299238818481 = 3^9 * 19 * 73 * ... %e A358205 14 59947 10781048322 = 2 * 3^10 * 11 * 43 * 193 %e A358205 15 296143 263102621634 = 2 * 3^12 * 17 * 14561 %e A358205 16 1890466 10721588872401 = 3^12 * 11 * 19 * ... %e A358205 17 6141994 113172283172097 = 3^16 * 2629057 %e A358205 18 1359025 5540849569926 = 2 * 3^14 * 11^2 * 4787 %e A358205 19 49188715 7258589148431106 = 2 * 3^17 * 28103531 %e A358205 20 20490901 1259631112357206 = 2 * 3^15 * 17 * 73 * ... %e A358205 21 264422320 209757490471391841 = 3^16 * 11 * 17 * ... %e A358205 22 178328878 95403566542874409 = 3^19 * 19 * 83 * ... %e A358205 23 1340590345 5391547422002837766 = 2 * 3^19 * 11^2 * ... %e A358205 24 9476420614 269407642979285252217 = 3^22 * 2617 * ... %e A358205 25 5989636213 107627225904222216534 = 2 * 3^20 * 19 * 97 * ... %e A358205 26 72238539832 15655219911322828844337 = 3^22 * 11 * 19 * ... %e A358205 27 103619599441 32211064165147101736326 = 2 * 3^22 * 11 * 43 * ... %e A358205 28 668478672403 1340591206374369138728034 = 2 * 3^22 * 19 * 331 * ... %e A358205 29 794002910839 1891321867264002956873442 = 2 * 3^23 * 11 * 73 * ... %e A358205 30 417430195531 522743904423981537506946 = 2 * 3^25 * 11 * 17 * ... %e A358205 . %e A358205 As a result, the last digits of the ternary representation of a(n) tend to fall into a pattern: %e A358205 . %e A358205 n a(n) a(n) in base 3 %e A358205 -- ------------ --------------------------- %e A358205 0 0 0_3 %e A358205 1 2 2_3 %e A358205 2 1 1_3 %e A358205 3 13 111_3 %e A358205 4 19 201_3 %e A358205 5 7 21_3 %e A358205 6 61 2021_3 %e A358205 7 331 110021_3 %e A358205 8 169 20021_3 %e A358205 9 1141 1120021_3 %e A358205 10 6487 22220021_3 %e A358205 11 898 1020021_3 %e A358205 12 20581 1001020021_3 %e A358205 13 315826 121001020021_3 %e A358205 14 59947 10001020021_3 %e A358205 15 296143 120001020021_3 %e A358205 16 1890466 10120001020021_3 %e A358205 17 6141994 102120001020021_3 %e A358205 18 1359025 2120001020021_3 %e A358205 19 49188715 10102120001020021_3 %e A358205 20 20490901 1102120001020021_3 %e A358205 21 264422320 200102120001020021_3 %e A358205 22 178328878 110102120001020021_3 %e A358205 23 1340590345 10110102120001020021_3 %e A358205 24 9476420614 220110102120001020021_3 %e A358205 25 5989636213 120110102120001020021_3 %e A358205 26 72238539832 20220110102120001020021_3 %e A358205 27 103619599441 100220110102120001020021_3 %e A358205 28 668478672403 2100220110102120001020021_3 %e A358205 29 794002910839 2210220110102120001020021_3 %e A358205 30 417430195531 1110220110102120001020021_3 %e A358205 (End) %p A358205 N:= 18: # for a(0)..a(N) %p A358205 V:= Array(0..N): count:= 0: %p A358205 for k from 0 while count < N+1 do %p A358205 v:= numtheory:-bigomega(1+2*k+3*k^2); %p A358205 if v <= N and V[v] = 0 then %p A358205 count:= count+1; V[v]:= k %p A358205 fi %p A358205 od: %p A358205 convert(V,list); %t A358205 a[n_] := Module[{i = 0},While[! PrimeOmega[1 + 2 i + 3 i^2] == n, i += 1]; i] %t A358205 Table[a[n], {n, 0, 14}] (* _Gerry Martens_, Nov 05 2022 *) %Y A358205 Cf. A001222, A056109, A086285, A122488. %K A358205 nonn %O A358205 0,2 %A A358205 _Robert Israel_, Nov 03 2022 %E A358205 a(21)-a(22) from _Amiram Eldar_, Nov 04 2022 %E A358205 a(23)-a(30) from _Jon E. Schoenfield_, Nov 05 2022