cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358205 a(n) is the least number k such that 1 + 2*k + 3*k^2 has exactly n prime divisors, counted with multiplicity.

This page as a plain text file.
%I A358205 #41 Jun 11 2023 14:22:27
%S A358205 0,2,1,13,19,7,61,331,169,1141,6487,898,20581,315826,59947,296143,
%T A358205 1890466,6141994,1359025,49188715,20490901,264422320,178328878,
%U A358205 1340590345,9476420614,5989636213,72238539832,103619599441,668478672403,794002910839,417430195531
%N A358205 a(n) is the least number k such that 1 + 2*k + 3*k^2 has exactly n prime divisors, counted with multiplicity.
%C A358205 a(n) is the least k such that A001222(A056109(k)) = n.
%H A358205 Gerry Martens, <a href="/A358205/b358205.txt">Table of n, a(n) for n = 0..40</a>
%e A358205 a(5) = 7 because 1 + 2*7 + 3*7^2 = 162 = 2*3^4 has 5 prime divisors, counted with multiplicity.
%e A358205 From _Jon E. Schoenfield_, Nov 05 2022: (Start)
%e A358205 Let m = 1 + 2*k + 3*k^2. Since no such number m is divisible by 2^2, 5, or 7, the smallest number m having a given number of prime factors counted with multiplicity will tend to have a large number of 3's among its prime factors:
%e A358205 .
%e A358205    n    k = a(n)                     m = 1 + 2*k + 3*k^2
%e A358205   --  ------------  -----------------------------------------------------
%e A358205    0             0                          1
%e A358205    1             2                         17 (prime)
%e A358205    2             1                          6 = 2 * 3
%e A358205    3            13                        534 = 2 * 3    * 89
%e A358205    4            19                       1122 = 2 * 3    * 11 * 17
%e A358205    5             7                        162 = 2 * 3^4
%e A358205    6            61                      11286 = 2 * 3^3  * 11 * 19
%e A358205    7           331                     329346 = 2 * 3^4  * 19 * 107
%e A358205    8           169                      86022 = 2 * 3^6  * 59
%e A358205    9          1141                    3907926 = 2 * 3^5  * 11 * 17 * 43
%e A358205   10          6487                  126256482 = 2 * 3^5  * 11^2 * 19 * 113
%e A358205   11           898                    2421009 =     3^10 * 41
%e A358205   12         20581                 1270773846 = 2 * 3^9  * 19 * 1699
%e A358205   13        315826               299238818481 =     3^9  * 19 * 73 * ...
%e A358205   14         59947                10781048322 = 2 * 3^10 * 11 * 43 * 193
%e A358205   15        296143               263102621634 = 2 * 3^12 * 17 * 14561
%e A358205   16       1890466             10721588872401 =     3^12 * 11 * 19 * ...
%e A358205   17       6141994            113172283172097 =     3^16 * 2629057
%e A358205   18       1359025              5540849569926 = 2 * 3^14 * 11^2 * 4787
%e A358205   19      49188715           7258589148431106 = 2 * 3^17 * 28103531
%e A358205   20      20490901           1259631112357206 = 2 * 3^15 * 17 * 73 * ...
%e A358205   21     264422320         209757490471391841 =     3^16 * 11 * 17 * ...
%e A358205   22     178328878          95403566542874409 =     3^19 * 19 * 83 * ...
%e A358205   23    1340590345        5391547422002837766 = 2 * 3^19 * 11^2 * ...
%e A358205   24    9476420614      269407642979285252217 =     3^22 * 2617 * ...
%e A358205   25    5989636213      107627225904222216534 = 2 * 3^20 * 19 * 97 * ...
%e A358205   26   72238539832    15655219911322828844337 =     3^22 * 11 * 19 * ...
%e A358205   27  103619599441    32211064165147101736326 = 2 * 3^22 * 11 * 43 * ...
%e A358205   28  668478672403  1340591206374369138728034 = 2 * 3^22 * 19 * 331 * ...
%e A358205   29  794002910839  1891321867264002956873442 = 2 * 3^23 * 11 * 73 * ...
%e A358205   30  417430195531   522743904423981537506946 = 2 * 3^25 * 11 * 17 * ...
%e A358205 .
%e A358205 As a result, the last digits of the ternary representation of a(n) tend to fall into a pattern:
%e A358205 .
%e A358205    n      a(n)             a(n) in base 3
%e A358205   --  ------------  ---------------------------
%e A358205    0             0                          0_3
%e A358205    1             2                          2_3
%e A358205    2             1                          1_3
%e A358205    3            13                        111_3
%e A358205    4            19                        201_3
%e A358205    5             7                         21_3
%e A358205    6            61                       2021_3
%e A358205    7           331                     110021_3
%e A358205    8           169                      20021_3
%e A358205    9          1141                    1120021_3
%e A358205   10          6487                   22220021_3
%e A358205   11           898                    1020021_3
%e A358205   12         20581                 1001020021_3
%e A358205   13        315826               121001020021_3
%e A358205   14         59947                10001020021_3
%e A358205   15        296143               120001020021_3
%e A358205   16       1890466             10120001020021_3
%e A358205   17       6141994            102120001020021_3
%e A358205   18       1359025              2120001020021_3
%e A358205   19      49188715          10102120001020021_3
%e A358205   20      20490901           1102120001020021_3
%e A358205   21     264422320         200102120001020021_3
%e A358205   22     178328878         110102120001020021_3
%e A358205   23    1340590345       10110102120001020021_3
%e A358205   24    9476420614      220110102120001020021_3
%e A358205   25    5989636213      120110102120001020021_3
%e A358205   26   72238539832    20220110102120001020021_3
%e A358205   27  103619599441   100220110102120001020021_3
%e A358205   28  668478672403  2100220110102120001020021_3
%e A358205   29  794002910839  2210220110102120001020021_3
%e A358205   30  417430195531  1110220110102120001020021_3
%e A358205 (End)
%p A358205 N:= 18: # for a(0)..a(N)
%p A358205 V:= Array(0..N): count:= 0:
%p A358205 for k from 0 while count < N+1 do
%p A358205   v:= numtheory:-bigomega(1+2*k+3*k^2);
%p A358205 if v <= N and V[v] = 0 then
%p A358205     count:= count+1; V[v]:= k
%p A358205 fi
%p A358205 od:
%p A358205 convert(V,list);
%t A358205 a[n_] := Module[{i = 0},While[! PrimeOmega[1 + 2 i + 3 i^2] == n, i += 1]; i]
%t A358205 Table[a[n], {n, 0, 14}] (* _Gerry Martens_, Nov 05 2022 *)
%Y A358205 Cf. A001222, A056109, A086285, A122488.
%K A358205 nonn
%O A358205 0,2
%A A358205 _Robert Israel_, Nov 03 2022
%E A358205 a(21)-a(22) from _Amiram Eldar_, Nov 04 2022
%E A358205 a(23)-a(30) from _Jon E. Schoenfield_, Nov 05 2022