A358240 Consider all invertible residues mod n. For each residue, find the smallest product of three primes (A014612) which is in that residue class mod n. a(n) is the greatest of these.
8, 27, 28, 45, 66, 175, 45, 105, 76, 171, 102, 325, 165, 261, 124, 273, 230, 385, 188, 369, 268, 255, 175, 475, 284, 549, 436, 477, 285, 1309, 332, 385, 430, 927, 318, 1127, 442, 639, 610, 657, 595, 1075, 742, 805, 724, 637, 646, 1705, 642, 741, 670, 1005, 885, 1435, 801, 1705, 1105, 873, 1004, 2821, 938, 873, 844
Offset: 1
Keywords
Examples
The least product of 3 primes = 1 mod 3 is 28, while the least = 2 mod 3 is 8, so a(2) = 28.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Ramachandran Balasubramanian, Olivier Ramaré, and Priyamvad Srivastav, Product of three primes in large arithmetic progressions, arXiv:2208.04031 [math.NT], 2022.
Programs
-
PARI
firstTri(m)=my(mod=m.mod); forprime(p=2,, if(mod%p==0, next); forprime(q=2,p, if(mod%q==0, next); forprimestep(r=2,q,m/p/q, return(p*q*r)))) a(n)=my(r=8); for(k=1,n-1, if(gcd(k,n)>1, next); r=max(firstTri(Mod(k,n)),r)); r
Formula
A result of Balasubramanian, Ramaré, & Srivastav proves that a(n) < n^e for each e > 9/2 and large enough n depending on e.
Extensions
Corrected by Charles R Greathouse IV, May 10 2023