This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358244 #42 Jan 03 2023 05:52:46 %S A358244 1,6,13,27,38,55,67,85,97,115,127,145,157,175,187,205,217,235,247,265, %T A358244 277,295,307,325,337,355,367,385,397,415,427,445,457,475,487,505,517, %U A358244 535,547,565,577,595,607,625,637,655,667,685,697,715,727,745,757,775 %N A358244 Number of n-regular, N_0-weighted pseudographs on 2 vertices with total edge weight 4, up to isomorphism. %C A358244 Pseudographs are finite graphs with undirected edges without identity, where parallel edges between the same vertices and loops are allowed. %H A358244 Lars Göttgens, <a href="/A358244/b358244.txt">Table of n, a(n) for n = 1..10000</a> %H A358244 J. Flake and V. Mackscheidt, <a href="https://arxiv.org/abs/2206.08226">Interpolating PBW Deformations for the Orthosymplectic Groups</a>, arXiv:2206.08226 [math.RT], 2022. %H A358244 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Pseudograph.html">Pseudograph</a>. %F A358244 Apparently a(n) = 6*A047209(n-2) + 1 for n >= 6, i.e., terms satisfy the linear recurrence a(n) = a(n-1) + a(n-2) - a(n-3) for n >= 9. - _Hugo Pfoertner_, Dec 02 2022 %e A358244 For n = 2 the a(2) = 6 such pseudographs are: %e A358244 1. two vertices connected by a 4-edge and a 0-edge, %e A358244 2. two vertices connected by a 3-edge and a 1-edge, %e A358244 3. two vertices connected by two 2-edges, %e A358244 4. two vertices where one has a 4-loop and the other one has a 0-loop, %e A358244 5. two vertices where one has a 3-loop and the other one has a 1-loop, %e A358244 6. two vertices with a 2-loop each. %o A358244 (Julia) %o A358244 using Combinatorics %o A358244 function A(n::Int) %o A358244 sum_total = 4 %o A358244 result = 0 %o A358244 for num_loops in 0:div(n, 2) %o A358244 num_cross = n - 2 * num_loops %o A358244 for sum_cross in 0:sum_total %o A358244 for sum_loop1 in 0:sum_total-sum_cross %o A358244 sum_loop2 = sum_total - sum_cross - sum_loop1 %o A358244 if sum_loop2 == sum_loop1 %o A358244 result += %o A358244 div( %o A358244 npartitions_with_zero(sum_loop2, num_loops) * %o A358244 (npartitions_with_zero(sum_loop2, num_loops) + 1), %o A358244 2, %o A358244 ) * npartitions_with_zero(sum_cross, num_cross) %o A358244 elseif sum_loop2 > sum_loop1 %o A358244 result += %o A358244 npartitions_with_zero(sum_loop2, num_loops) * %o A358244 npartitions_with_zero(sum_loop1, num_loops) * %o A358244 npartitions_with_zero(sum_cross, num_cross) %o A358244 end %o A358244 end %o A358244 end %o A358244 end %o A358244 return result %o A358244 end %o A358244 function npartitions_with_zero(n::Int, m::Int) %o A358244 if m == 0 %o A358244 if n == 0 %o A358244 return 1 %o A358244 else %o A358244 return 0 %o A358244 end %o A358244 else %o A358244 return Combinatorics.npartitions(n + m, m) %o A358244 end %o A358244 end %o A358244 print([A(n) for n in 1:54]) %Y A358244 Other total edge weights: A358243 (3), A358245 (5), A358246 (6), A358247 (7), A358248 (8), A358249 (9). %Y A358244 Cf. A047209. %K A358244 nonn %O A358244 1,2 %A A358244 _Lars Göttgens_, Nov 04 2022