This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358246 #19 Jan 01 2023 15:59:20 %S A358246 1,8,23,55,92,147,196,260,313,380,434,502,556,624,678,746,800,868,922, %T A358246 990,1044,1112,1166,1234,1288,1356,1410,1478,1532,1600,1654,1722,1776, %U A358246 1844,1898,1966,2020,2088,2142,2210,2264,2332,2386,2454,2508,2576,2630,2698 %N A358246 Number of n-regular, N_0-weighted pseudographs on 2 vertices with total edge weight 6, up to isomorphism. %C A358246 Pseudographs are finite graphs with undirected edges without identity, where parallel edges between the same vertices and loops are allowed. %H A358246 Lars Göttgens, <a href="/A358246/b358246.txt">Table of n, a(n) for n = 1..10000</a> %H A358246 J. Flake and V. Mackscheidt, <a href="https://arxiv.org/abs/2206.08226">Interpolating PBW Deformations for the Orthosymplectic Groups</a>, arXiv:2206.08226 [math.RT], 2022. %H A358246 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Pseudograph.html">Pseudograph</a>. %F A358246 Apparently a(n) = a(n-1) + a(n-2) - a(n-3) for n >= 13. - _Hugo Pfoertner_, Dec 02 2022 %e A358246 For n = 2 the a(2) = 8 such pseudographs are: 1. two vertices connected by a 6-edge and a 0-edge, 2. two vertices connected by a 5-edge and a 1-edge, 3. two vertices connected by a 4-edge and a 2-edge, 4. two vertices connected by two 3-edges, 5. two vertices where one has a 6-loop and the other one has a 0-loop, 6. two vertices where one has a 5-loop and the other one has a 1-loop, 7. two vertices where one has a 4-loop and the other one has a 2-loop, 8. two vertices with a 3-loop each. %o A358246 (Julia) %o A358246 using Combinatorics %o A358246 function A(n::Int) %o A358246 sum_total = 6 %o A358246 result = 0 %o A358246 for num_loops in 0:div(n, 2) %o A358246 num_cross = n - 2 * num_loops %o A358246 for sum_cross in 0:sum_total %o A358246 for sum_loop1 in 0:sum_total-sum_cross %o A358246 sum_loop2 = sum_total - sum_cross - sum_loop1 %o A358246 if sum_loop2 == sum_loop1 %o A358246 result += %o A358246 div( %o A358246 npartitions_with_zero(sum_loop2, num_loops) * %o A358246 (npartitions_with_zero(sum_loop2, num_loops) + 1), %o A358246 2, %o A358246 ) * npartitions_with_zero(sum_cross, num_cross) %o A358246 elseif sum_loop2 > sum_loop1 %o A358246 result += %o A358246 npartitions_with_zero(sum_loop2, num_loops) * %o A358246 npartitions_with_zero(sum_loop1, num_loops) * %o A358246 npartitions_with_zero(sum_cross, num_cross) %o A358246 end %o A358246 end %o A358246 end %o A358246 end %o A358246 return result %o A358246 end %o A358246 function npartitions_with_zero(n::Int, m::Int) %o A358246 if m == 0 %o A358246 if n == 0 %o A358246 return 1 %o A358246 else %o A358246 return 0 %o A358246 end %o A358246 else %o A358246 return Combinatorics.npartitions(n + m, m) %o A358246 end %o A358246 end %o A358246 print([A(n) for n in 1:48]) %Y A358246 Other total edge weights: A358243 (3), A358244 (4), A358245 (5), A358247 (7), A358248 (8), A358249 (9). %K A358246 nonn %O A358246 1,2 %A A358246 _Lars Göttgens_, Nov 04 2022