This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358247 #21 Dec 01 2022 10:22:51 %S A358247 1,8,28,71,132,217,309,417,521,638,746,866,975,1096,1205,1326,1435, %T A358247 1556,1665,1786,1895,2016,2125,2246,2355,2476,2585,2706,2815,2936, %U A358247 3045,3166,3275,3396,3505,3626,3735,3856,3965,4086,4195,4316,4425,4546,4655 %N A358247 Number of n-regular, N_0-weighted pseudographs on 2 vertices with total edge weight 7, up to isomorphism. %C A358247 Pseudographs are finite graphs with undirected edges without identity, where parallel edges between the same vertices and loops are allowed. %H A358247 Lars Göttgens, <a href="/A358247/b358247.txt">Table of n, a(n) for n = 1..10000</a> %H A358247 J. Flake and V. Mackscheidt, <a href="https://arxiv.org/abs/2206.08226">Interpolating PBW Deformations for the Orthosymplectic Groups</a>, arXiv:2206.08226 [math.RT], 2022. %H A358247 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Pseudograph.html">Pseudograph</a>. %e A358247 For n = 2 the a(2) = 8 such pseudographs are: 1. two vertices connected by a 7-edge and a 0-edge, 2. two vertices connected by a 6-edge and a 1-edge, 3. two vertices connected by a 5-edge and a 2-edge, 4. two vertices connected by a 4-edge and a 3-edge, 5. two vertices where one has a 7-loop and the other one has a 0-loop, 6. two vertices where one has a 6-loop and the other one has a 1-loop, 7. two vertices where one has a 5-loop and the other one has a 2-loop, 8. two vertices where one has a 4-loop and the other one has a 3-loop. %o A358247 (Julia) %o A358247 using Combinatorics %o A358247 function A(n::Int) %o A358247 sum_total = 7 %o A358247 result = 0 %o A358247 for num_loops in 0:div(n, 2) %o A358247 num_cross = n - 2 * num_loops %o A358247 for sum_cross in 0:sum_total %o A358247 for sum_loop1 in 0:sum_total-sum_cross %o A358247 sum_loop2 = sum_total - sum_cross - sum_loop1 %o A358247 if sum_loop2 == sum_loop1 %o A358247 result += %o A358247 div( %o A358247 npartitions_with_zero(sum_loop2, num_loops) * %o A358247 (npartitions_with_zero(sum_loop2, num_loops) + 1), %o A358247 2, %o A358247 ) * npartitions_with_zero(sum_cross, num_cross) %o A358247 elseif sum_loop2 > sum_loop1 %o A358247 result += %o A358247 npartitions_with_zero(sum_loop2, num_loops) * %o A358247 npartitions_with_zero(sum_loop1, num_loops) * %o A358247 npartitions_with_zero(sum_cross, num_cross) %o A358247 end %o A358247 end %o A358247 end %o A358247 end %o A358247 return result %o A358247 end %o A358247 function npartitions_with_zero(n::Int, m::Int) %o A358247 if m == 0 %o A358247 if n == 0 %o A358247 return 1 %o A358247 else %o A358247 return 0 %o A358247 end %o A358247 else %o A358247 return Combinatorics.npartitions(n + m, m) %o A358247 end %o A358247 end %o A358247 print([A(n) for n in 1:45]) %Y A358247 Other total edge weights: 3 (A358243), 4 (A358244), 5 (A358245), 6 (A358246), 8 (A358248), 9 (A358249). %K A358247 nonn %O A358247 1,2 %A A358247 _Lars Göttgens_, Nov 04 2022