This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358248 #18 Dec 01 2022 10:23:33 %S A358248 1,10,35,99,190,332,484,680,863,1082,1277,1505,1704,1935,2135,2367, %T A358248 2567,2799,2999,3231,3431,3663,3863,4095,4295,4527,4727,4959,5159, %U A358248 5391,5591,5823,6023,6255,6455,6687,6887,7119,7319,7551,7751,7983,8183,8415,8615,8847 %N A358248 Number of n-regular, N_0-weighted pseudographs on 2 vertices with total edge weight 8, up to isomorphism. %C A358248 Pseudographs are finite graphs with undirected edges without identity, where parallel edges between the same vertices and loops are allowed. %H A358248 Lars Göttgens, <a href="/A358248/b358248.txt">Table of n, a(n) for n = 1..10000</a> %H A358248 J. Flake and V. Mackscheidt, <a href="https://arxiv.org/abs/2206.08226">Interpolating PBW Deformations for the Orthosymplectic Groups</a>, arXiv:2206.08226 [math.RT], 2022. %H A358248 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Pseudograph.html">Pseudograph</a>. %e A358248 For n = 2 the a(2) = 10 such pseudographs are: 1. two vertices connected by a 8-edge and a 0-edge, 2. two vertices connected by a 7-edge and a 1-edge, 3. two vertices connected by a 6-edge and a 2-edge, 4. two vertices connected by a 5-edge and a 3-edge, 5. two vertices connected by two 4-edges, 6. two vertices where one has a 8-loop and the other one has a 0-loop, 7. two vertices where one has a 7-loop and the other one has a 1-loop, 8. two vertices where one has a 6-loop and the other one has a 2-loop, 9. two vertices where one has a 5-loop and the other one has a 3-loop, 10. two vertices with a 4-loop each. %o A358248 (Julia) %o A358248 using Combinatorics %o A358248 function A(n::Int) %o A358248 sum_total = 8 %o A358248 result = 0 %o A358248 for num_loops in 0:div(n, 2) %o A358248 num_cross = n - 2 * num_loops %o A358248 for sum_cross in 0:sum_total %o A358248 for sum_loop1 in 0:sum_total-sum_cross %o A358248 sum_loop2 = sum_total - sum_cross - sum_loop1 %o A358248 if sum_loop2 == sum_loop1 %o A358248 result += %o A358248 div( %o A358248 npartitions_with_zero(sum_loop2, num_loops) * %o A358248 (npartitions_with_zero(sum_loop2, num_loops) + 1), %o A358248 2, %o A358248 ) * npartitions_with_zero(sum_cross, num_cross) %o A358248 elseif sum_loop2 > sum_loop1 %o A358248 result += %o A358248 npartitions_with_zero(sum_loop2, num_loops) * %o A358248 npartitions_with_zero(sum_loop1, num_loops) * %o A358248 npartitions_with_zero(sum_cross, num_cross) %o A358248 end %o A358248 end %o A358248 end %o A358248 end %o A358248 return result %o A358248 end %o A358248 function npartitions_with_zero(n::Int, m::Int) %o A358248 if m == 0 %o A358248 if n == 0 %o A358248 return 1 %o A358248 else %o A358248 return 0 %o A358248 end %o A358248 else %o A358248 return Combinatorics.npartitions(n + m, m) %o A358248 end %o A358248 end %o A358248 print([A(n) for n in 1:46]) %Y A358248 Other total edge weights: 3 (A358243), 4 (A358244), 5 (A358245), 6 (A358246), 7 (A358247), 9 (A358249). %K A358248 nonn %O A358248 1,2 %A A358248 _Lars Göttgens_, Nov 04 2022