cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A358253 Numbers with a record number of non-unitary square divisors.

Original entry on oeis.org

1, 8, 32, 128, 288, 864, 1152, 2592, 4608, 10368, 20736, 28800, 41472, 64800, 115200, 259200, 518400, 1036800, 2073600, 4147200, 8294400, 9331200, 12700800, 25401600, 50803200, 101606400, 203212800, 406425600, 457228800, 635040000, 812851200, 914457600, 1270080000
Offset: 1

Views

Author

Amiram Eldar, Nov 05 2022

Keywords

Comments

Numbers m such that A056626(m) > A056626(k) for all k < m.
The corresponding record values are 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 20, 22, ... (see the link for more values).

Crossrefs

Subsequence of A025487.
Similar sequences: A002182 (all divisors), A002110 (unitary), A037992 (infinitary), A046952 (square divisors), A053624 (odd divisors), A293185 (bi-unitary), A309141 (non-unitary), A318278 (exponential).

Programs

  • Mathematica
    f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^(1 - Mod[e, 2]); f[1] = 0; f[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; s = {}; fmax = -1; Do[If[(fn = f[n]) > fmax, fmax = fn; AppendTo[s, n]], {n, 1, 10^5}]; s
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + floor(f[i,2]/2)) - 2^sum(i = 1, #f~, 1 - f[i,2]%2);}
    lista(nmax) = {my(smax = -1, sn); for(n = 1, nmax, sn = s(n); if(sn > smax, smax = sn; print1(n, ", "))); }

A358262 a(n) is the least number with exactly n noninfinitary square divisors.

Original entry on oeis.org

1, 16, 144, 256, 3600, 1296, 2304, 65536, 129600, 16777216, 32400, 20736, 57600, 331776, 589824, 4294967296, 6350400, 1099511627776, 150994944, 810000, 1587600, 1679616, 518400, 5308416, 2822400, 84934656, 8294400, 26873856, 14745600, 21743271936, 38654705664
Offset: 0

Views

Author

Amiram Eldar, Nov 06 2022

Keywords

Comments

a(n) is the least number k such that A358261(k) = n.
Since A358261(k) depends only on the prime signature of k, all the terms of this sequence are in A025487.

Examples

			a(1) = 16 since 16 is the least number with exactly one noninfinitary divisor, 4.
		

Crossrefs

Similar sequences: A005179 (all divisors), A038547 (odd divisors), A085629 (coreful divisors), A130279 (square), A187941 (even), A309181 (non-unitary), A340232 (bi-unitary), A340233 (exponential), A357450 (odd square), A358252 (non-unitary square).

Programs

  • Mathematica
    f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^DigitCount[If[OddQ[e], e - 1, e], 2, 1]; f[1] = 0; f[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[15, 2*10^7]
  • PARI
    s(n) = {my(f = factor(n));  prod(i=1, #f~, 1+f[i,2]\2) - prod(i=1, #f~, 2^hammingweight(if(f[i,2]%2, f[i,2]-1, f[i,2])))};
    lista(len, nmax) = {my(v = vector(len), c = 0, n = 1, i); while(c < len && n < nmax, i = s(n) + 1; if(i <= len && v[i] == 0, c++; v[i] = n); n++); v};

A361418 a(n) is the least number with exactly n noninfinitary divisors.

Original entry on oeis.org

1, 4, 12, 16, 60, 36, 48, 256, 360, 4096, 180, 144, 240, 576, 768, 65536, 2520, 1048576, 12288, 900, 1260, 1296, 720, 2304, 1680, 9216, 2880, 5184, 3840, 147456, 196608, 36864, 27720, 46656, 3145728, 4398046511104, 61440, 3600, 6300, 18014398509481984, 10080, 20736
Offset: 0

Views

Author

Amiram Eldar, Mar 11 2023

Keywords

Comments

a(n) is the least number k such that A348341(k) = n.
Since A348341(k) depends only on the prime signature of k, all the terms of this sequence are in A025487.

Examples

			a(1) = 4 since 4 is the least number with exactly one noninfinitary divisor, 2.
		

Crossrefs

Similar sequences: A005179 (all divisors), A038547 (odd divisors), A085629 (coreful divisors), A130279 (square), A187941 (even), A309181 (non-unitary), A340232 (bi-unitary), A340233 (exponential), A357450 (odd square), A358252 (non-unitary square).

Programs

  • Mathematica
    f[1] = 0; f[n_] := DivisorSigma[0, n] - Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[;; , 2]]];
    seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s];
    seq[35, 10^7]
  • PARI
    s(n) = {my(f = factor(n)); numdiv(f) - prod(i = 1, #f~, 2^hammingweight(f[i,2]));}
    lista(len, nmax) = {my(v = vector(len), c = 0, n = 1, i); while(c < len && n < nmax, i = s(n) + 1; if(i <= len && v[i] == 0, c++; v[i] = n); n++); v};
Showing 1-3 of 3 results.