This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358258 #21 Nov 07 2022 02:10:12 %S A358258 0,2,6,9,17,42,92,131,307,650,1024,2238,4164,8226,17384,33197,67167, %T A358258 133549,269119,525974,1055175,2111641,4213053,8444257,16783217, %U A358258 33601813,67405064,134239260,268711604,538400994,1076155844,2152693259,4299075300,8594396933,17203509931 %N A358258 First n-bit number to appear in Van Eck's sequence (A181391). %C A358258 Binary version of A358168. %e A358258 First terms written in binary, substituting "." for 0 to enhance the pattern of 1's. %e A358258 n a(n) a(n)_2 %e A358258 ------------------------------------- %e A358258 1 0 . %e A358258 2 2 1. %e A358258 3 6 11. %e A358258 4 9 1..1 %e A358258 5 17 1...1 %e A358258 6 42 1.1.1. %e A358258 7 92 1.111.. %e A358258 8 131 1.....11 %e A358258 9 307 1..11..11 %e A358258 10 650 1.1...1.1. %e A358258 11 1024 1.......... %e A358258 12 2238 1...1.11111. %e A358258 13 4164 1.....1...1.. %e A358258 14 8226 1.......1...1. %e A358258 15 17384 1....11111.1... %e A358258 16 33197 1......11.1.11.1 %e A358258 17 67167 1.....11..1.11111 %e A358258 18 133549 1.....1..11.1.11.1 %e A358258 19 269119 1.....11.11..111111 %e A358258 20 525974 1........11.1..1.11. %e A358258 21 1055175 1.......11..111...111 %e A358258 22 2111641 1.......111...1..11..1 %e A358258 23 4213053 1.......1..1..1..1111.1 %e A358258 24 8444257 1.......11.11..1.11....1 %t A358258 nn = 2^20; q[_] = False; q[0] = True; a[_] = 0; c[_] = -1; c[0] = 2; m = 1; {0}~Join~Rest@ Reap[Do[j = c[m]; k = m; c[m] = n; m = 0; If[j > 0, m = n - j]; If[! q[#], Sow[k]; q[#] = True] & @ IntegerLength[k, 2], {n, 3, nn}] ][[-1, -1]] %o A358258 (Python) %o A358258 from itertools import count %o A358258 def A358258(n): %o A358258 b, bdict, k = 0, {0:(1,)},1<<n-1 if n > 1 else 0 %o A358258 for m in count(2): %o A358258 if b >= k: %o A358258 return b %o A358258 if len(l := bdict[b]) > 1: %o A358258 b = m-1-l[-2] %o A358258 if b in bdict: %o A358258 bdict[b] = (bdict[b][-1],m) %o A358258 else: %o A358258 bdict[b] = (m,) %o A358258 else: %o A358258 b = 0 %o A358258 bdict[0] = (bdict[0][-1],m) # _Chai Wah Wu_, Nov 06 2022 %Y A358258 Cf. A181391, A358168, A358180, A358259. %K A358258 nonn,base %O A358258 1,2 %A A358258 _Michael De Vlieger_, Nov 05 2022 %E A358258 a(30)-a(34) from _Chai Wah Wu_, Nov 06 2022 %E A358258 a(35) from _Martin Ehrenstein_, Nov 07 2022