cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358259 Positions of the first n-bit number to appear in Van Eck's sequence (A181391).

Original entry on oeis.org

1, 5, 10, 24, 41, 52, 152, 162, 364, 726, 1150, 2451, 4626, 9847, 18131, 36016, 71709, 143848, 276769, 551730, 1086371, 2158296, 4297353, 8607525, 17159741, 34152001, 68194361, 136211839, 271350906, 541199486, 1084811069, 2165421369, 4331203801, 8643518017, 17303787585
Offset: 1

Views

Author

Michael De Vlieger, Nov 05 2022

Keywords

Comments

Binary version of the concept behind A358180.

Examples

			First terms written in binary, substituting "." for 0 to enhance the pattern of 1's.
   n      a(n)                   a(n)_2
  -------------------------------------
   1        1                         1
   2        5                       1.1
   3       10                      1.1.
   4       24                     11...
   5       41                    1.1..1
   6       52                    11.1..
   7      152                  1..11...
   8      162                  1.1...1.
   9      364                 1.11.11..
  10      726                1.11.1.11.
  11     1150               1...111111.
  12     2451              1..11..1..11
  13     4626             1..1....1..1.
  14     9847            1..11..111.111
  15    18131           1...11.11.1..11
  16    36016          1...11..1.11....
  17    71709         1...11......111.1
  18   143848        1...11...1111.1...
  19   276769       1....111..1..1....1
  20   551730      1....11.1.11..11..1.
  21  1086371     1....1..1..111.1...11
  22  2158296    1.....111.111.11.11...
  23  4297353   1.....11..1..1.1...1..1
  24  8607525  1.....11.1.1.111..1..1.1
  etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 2^20; q[] = False; q[0] = True; a[] = 0; c[_] = -1; c[0] = 2; m = 1; {1}~Join~Rest@ Reap[Do[j = c[m]; k = m; c[m] = n; m = 0; If[j > 0, m = n - j]; If[! q[#], Sow[n]; q[#] = True] & @ IntegerLength[k, 2], {n, 3, nn}] ][[-1, -1]]
  • Python
    from itertools import count
    def A358259(n):
        b, bdict, k = 0, {0:(1,)},1< 1 else 0
        for m in count(2):
            if b >= k:
                return m-1
            if len(l := bdict[b]) > 1:
                b = m-1-l[-2]
                if b in bdict:
                    bdict[b] = (bdict[b][-1],m)
                else:
                    bdict[b] = (m,)
            else:
                b = 0
                bdict[0] = (bdict[0][-1],m) # Chai Wah Wu, Nov 06 2022

Extensions

a(30)-a(34) from Chai Wah Wu, Nov 06 2022
a(35) from Martin Ehrenstein, Nov 07 2022