This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358260 #12 Nov 07 2022 02:10:42 %S A358260 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,2,1,2,1,2,1,1,1,2,2,1,2,2,1,1,1,2,1,1, %T A358260 1,4,1,1,1,2,1,1,1,2,2,1,1,2,2,2,1,2,1,2,1,2,1,1,1,2,1,1,2,4,1,1,1,2, %U A358260 1,1,1,4,1,1,2,2,1,1,1,2,2,1,1,2,1,1,1 %N A358260 a(n) is the number of infinitary square divisors of n. %C A358260 First differs from A007424 at n = 36, from A323308 at n = 64, and from A278908 and A307848 at n = 128. %H A358260 Amiram Eldar, <a href="/A358260/b358260.txt">Table of n, a(n) for n = 1..10000</a> %F A358260 Multiplicative with a(p^e) = 2^A000120(e) if e is even, and 2^A000120(e-1) if e is odd. %F A358260 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} ((1-1/p) * Sum_{k>=1} a(p^k)/p^k) = 1.55454884667440993654... . %t A358260 f[p_, e_] := 2^DigitCount[If[OddQ[e], e - 1, e], 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A358260 (PARI) a(n) = {my(f = factor(n)); prod(i=1, #f~, 2^hammingweight(if(f[i,2]%2, f[i,2]-1, f[i,2])))}; %Y A358260 Cf. A000120, A048881, A037445, A077609, A358261. %Y A358260 Similar sequences: A046951, A056624, A056626. %Y A358260 Sequences with the same initial terms: A007424, A278908, A307848, A323308. %K A358260 nonn,mult %O A358260 1,4 %A A358260 _Amiram Eldar_, Nov 06 2022