cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358260 a(n) is the number of infinitary square divisors of n.

This page as a plain text file.
%I A358260 #12 Nov 07 2022 02:10:42
%S A358260 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,2,1,2,1,2,1,1,1,2,2,1,2,2,1,1,1,2,1,1,
%T A358260 1,4,1,1,1,2,1,1,1,2,2,1,1,2,2,2,1,2,1,2,1,2,1,1,1,2,1,1,2,4,1,1,1,2,
%U A358260 1,1,1,4,1,1,2,2,1,1,1,2,2,1,1,2,1,1,1
%N A358260 a(n) is the number of infinitary square divisors of n.
%C A358260 First differs from A007424 at n = 36, from A323308 at n = 64, and from A278908 and A307848 at n = 128.
%H A358260 Amiram Eldar, <a href="/A358260/b358260.txt">Table of n, a(n) for n = 1..10000</a>
%F A358260 Multiplicative with a(p^e) = 2^A000120(e) if e is even, and 2^A000120(e-1) if e is odd.
%F A358260 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} ((1-1/p) * Sum_{k>=1} a(p^k)/p^k) = 1.55454884667440993654... .
%t A358260 f[p_, e_] := 2^DigitCount[If[OddQ[e], e - 1, e], 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A358260 (PARI) a(n) = {my(f = factor(n)); prod(i=1, #f~, 2^hammingweight(if(f[i,2]%2, f[i,2]-1, f[i,2])))};
%Y A358260 Cf. A000120, A048881, A037445, A077609, A358261.
%Y A358260 Similar sequences: A046951, A056624, A056626.
%Y A358260 Sequences with the same initial terms: A007424, A278908, A307848, A323308.
%K A358260 nonn,mult
%O A358260 1,4
%A A358260 _Amiram Eldar_, Nov 06 2022