cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358271 Product of the digits of 3^n.

This page as a plain text file.
%I A358271 #33 Nov 08 2022 07:40:20
%S A358271 1,3,9,14,8,24,126,112,180,1296,0,1372,240,3240,217728,0,0,0,0,24192,
%T A358271 0,0,0,2709504,6635520,0,66355200,8534937600,731566080,0,0,
%U A358271 10369949184,0,0,399983754240,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6243870843076608000
%N A358271 Product of the digits of 3^n.
%C A358271 a(68) is likely the last nonzero term; see A030700 and A238939. - _Michael S. Branicky_, Nov 06 2022
%F A358271 a(n) = A007954(A000244(n)).
%e A358271 For a(0), 3^0 = 1 with product of digits 1;
%e A358271 for a(3), 3^3 = 27 with product of digits 2*7 = 14;
%e A358271 for a(10), 3^10 = 59049 with product of digits 5*9*0*4*9 = 0.
%t A358271 a[n_] := Times @@ IntegerDigits[3^n]; Array[a, 69, 0] (* _Amiram Eldar_, Nov 07 2022 *)
%o A358271 (Python)
%o A358271 from math import prod
%o A358271 def a(n): return prod(map(int, str(3**n)))
%o A358271 print([a(n) for n in range(69)]) # _Michael S. Branicky_, Nov 06 2022
%o A358271 (PARI) a(n) = vecprod(digits(3^n)); \\ _Michel Marcus_, Nov 07 2022
%Y A358271 Cf. A007954, A000244.
%Y A358271 Cf. A030700, A238939.
%Y A358271 Cf. A014257.
%K A358271 nonn,base
%O A358271 0,2
%A A358271 _Joseph Caliendo_, Nov 06 2022
%E A358271 More terms from _Michael S. Branicky_, Nov 06 2022