This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358304 #26 Apr 20 2023 02:30:32 %S A358304 0,0,0,0,2,0,0,5,5,0,0,9,10,9,0,0,14,19,19,14,0,0,20,27,32,27,20,0,0, %T A358304 27,40,47,47,40,27,0,0,35,51,68,66,68,51,35,0,0,44,68,85,96,96,85,68, %U A358304 44,0,0,54,82,112,118,134,118,112,82,54,0,0,65,103,137,156,167,167,156,137,103,65,0,0,77,120,166,187,217,204,217,187,166,120,77,0 %N A358304 Array read by antidiagonals: T(n,k) (n>=0, k>=0) = number of decreasing lines defining the Farey diagram Farey(n,k) of order (n,k). %H A358304 Daniel Khoshnoudirad, <a href="http://pefmath.etf.rs/vol9num1/AADM-Vol9-No1-73-84.pdf">Farey lines defining Farey diagrams and application to some discrete structures</a>, Applicable Analysis and Discrete Mathematics, 9 (2015), 73-84; doi:10.2298/AADM150219008K. See Lemma 1, |DFD(m,n)|. %e A358304 The full array T(n,k), n >= 0, k >= 0, begins: %e A358304 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, .. %e A358304 0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, .. %e A358304 0, 5, 10, 19, 27, 40, 51, 68, 82, 103, 120, 145, 165, .. %e A358304 0, 9, 19, 32, 47, 68, 85, 112, 137, 166, 196, 235, 265, .. %e A358304 0, 14, 27, 47, 66, 96, 118, 156, 187, 229, 266, 320, 358, .. %e A358304 0, 20, 40, 68, 96, 134, 167, 217, 261, 317, 366, 436, 491, .. %e A358304 0, 27, 51, 85, 118, 167, 204, 267, 318, 384, 441, 528, 589, .. %e A358304 ... %p A358304 A005728 := proc(n) 1+add(numtheory[phi](i), i=1..n) ; end proc: # called F_n in the paper %p A358304 Amn:=proc(m,n) local a,i,j; # A331781 or equally A333295. Diagonal is A018805. %p A358304 a:=0; for i from 1 to m do for j from 1 to n do %p A358304 if igcd(i,j)=1 then a:=a+1; fi; od: od: a; end; %p A358304 DFD:=proc(m,n) local d,t1,u,v; global A005728, Amn; %p A358304 t1:=0; for u from 1 to m do for v from 1 to n do %p A358304 d:=igcd(u,v); if d>=1 then t1:=t1 + (u+v)*numtheory[phi](d)/d; fi; od: od: %p A358304 t1; end; %p A358304 for m from 0 to 8 do lprint([seq(DFD(m,n),n=0..20)]); od: %t A358304 T[n_, k_] := Sum[d = GCD[u, v]; If[d >= 1, (u+v)*EulerPhi[d]/d, 0], {u, 1, n}, {v, 1, k}]; %t A358304 Table[T[n-k, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Apr 18 2023 *) %Y A358304 Cf. A358298. %Y A358304 The Farey Diagrams Farey(m,n) are studied in A358298-A358307 and A358882-A358885, the Completed Farey Diagrams of order (m,n) in A358886-A358889. %K A358304 nonn,tabl %O A358304 0,5 %A A358304 _Scott R. Shannon_ and _N. J. A. Sloane_, Dec 06 2022