cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358311 Lucas numbers that are not the sum of two squares.

This page as a plain text file.
%I A358311 #24 Jan 26 2024 13:53:36
%S A358311 3,7,11,47,76,123,199,322,843,1364,2207,3571,5778,15127,24476,39603,
%T A358311 64079,103682,167761,271443,439204,710647,1149851,4870847,7881196,
%U A358311 12752043,20633239,33385282,87403803,141422324,228826127,370248451,599074578,1568397607,2537720636
%N A358311 Lucas numbers that are not the sum of two squares.
%C A358311 Lucas numbers with indices 2, 4, 5 mod 6 are 3 mod 4, so these are all terms. - _Charles R Greathouse IV_, Jan 11 2023
%H A358311 Chai Wah Wu, <a href="/A358311/b358311.txt">Table of n, a(n) for n = 1..958</a>
%F A358311 phi^n < a(n) < phi^(2n) for n > 4. - _Charles R Greathouse IV_, Jan 11 2023
%p A358311 R:= NULL: count:= 0:
%p A358311 a:= 2: b:= 1:
%p A358311 for i from 1 while count < 100 do
%p A358311   a, b:= b,a+b;
%p A358311     if ormap(t -> t[2]::odd and t[1] mod 4 = 3, ifactors(b)[2]) then
%p A358311      R:= R, b; count:= count+1
%p A358311   fi
%p A358311 od:
%p A358311 R; # _Robert Israel_, Jan 10 2023
%o A358311 (Python)
%o A358311 from sympy import factorint
%o A358311 from itertools import islice
%o A358311 def A358311_gen(): # generator of terms
%o A358311     a, b = 2,1
%o A358311     while True:
%o A358311         if any(e&1 and p&3==3 for p, e in factorint(a).items()):
%o A358311             yield a
%o A358311         a, b = b, a+b
%o A358311 A358311_list = list(islice(A358311_gen(),40))
%Y A358311 Intersection of A000032 and A022544.
%Y A358311 Cf. A356809.
%K A358311 nonn
%O A358311 1,1
%A A358311 _Chai Wah Wu_, Jan 10 2023