This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358311 #24 Jan 26 2024 13:53:36 %S A358311 3,7,11,47,76,123,199,322,843,1364,2207,3571,5778,15127,24476,39603, %T A358311 64079,103682,167761,271443,439204,710647,1149851,4870847,7881196, %U A358311 12752043,20633239,33385282,87403803,141422324,228826127,370248451,599074578,1568397607,2537720636 %N A358311 Lucas numbers that are not the sum of two squares. %C A358311 Lucas numbers with indices 2, 4, 5 mod 6 are 3 mod 4, so these are all terms. - _Charles R Greathouse IV_, Jan 11 2023 %H A358311 Chai Wah Wu, <a href="/A358311/b358311.txt">Table of n, a(n) for n = 1..958</a> %F A358311 phi^n < a(n) < phi^(2n) for n > 4. - _Charles R Greathouse IV_, Jan 11 2023 %p A358311 R:= NULL: count:= 0: %p A358311 a:= 2: b:= 1: %p A358311 for i from 1 while count < 100 do %p A358311 a, b:= b,a+b; %p A358311 if ormap(t -> t[2]::odd and t[1] mod 4 = 3, ifactors(b)[2]) then %p A358311 R:= R, b; count:= count+1 %p A358311 fi %p A358311 od: %p A358311 R; # _Robert Israel_, Jan 10 2023 %o A358311 (Python) %o A358311 from sympy import factorint %o A358311 from itertools import islice %o A358311 def A358311_gen(): # generator of terms %o A358311 a, b = 2,1 %o A358311 while True: %o A358311 if any(e&1 and p&3==3 for p, e in factorint(a).items()): %o A358311 yield a %o A358311 a, b = b, a+b %o A358311 A358311_list = list(islice(A358311_gen(),40)) %Y A358311 Intersection of A000032 and A022544. %Y A358311 Cf. A356809. %K A358311 nonn %O A358311 1,1 %A A358311 _Chai Wah Wu_, Jan 10 2023