A358313 Primes p such that 24*p is the difference of two squares of primes in three different ways.
5, 7, 13, 17, 23, 103, 6863, 7523, 11807, 11833, 22447, 91807, 100517, 144167, 204013, 221077, 478937, 531983, 571867, 752293, 1440253, 1647383, 1715717, 1727527, 1768667, 2193707, 2381963, 2539393, 2957237, 3215783, 3290647, 3873713, 4243997, 4512223, 4880963, 4895777, 5226107, 5345317, 5540063
Offset: 1
Keywords
Examples
a(3) = 13 is a term because 13 is prime, 13 +- 6 = 19 and 7 are primes, 2*13 +- 3 = 29 and 23 are primes, and 3*13 +- 2 = 37 and 41 are primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A124865.
Programs
-
Maple
filter:= proc(p) local t; if not isprime(p) then return false fi; t:= 0; if isprime(p+6) and isprime(p-6) then t:= t+1 fi; if isprime(2*p+3) and isprime(2*p-3) then t:= t+1 fi; if isprime(3*p+2) and isprime(3*p-2) then t:= t+1 fi; if isprime(6*p+1) and isprime(6*p-1) then t:= t+1 fi; t = 3 end proc: select(filter, [seq(i,i=3..10^7,2)]);
Comments