A358318 For n >= 5, a(n) is the number of zeros that need to be inserted to the left of the ones digit of the n-th prime so that the result is composite.
2, 2, 2, 4, 1, 1, 1, 2, 3, 1, 1, 3, 3, 2, 3, 5, 1, 2, 1, 3, 5, 1, 1, 1, 3, 3, 1, 3, 3, 1, 4, 1, 1, 1, 3, 1, 2, 2, 3, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 5, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 6, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 2, 1, 1, 1, 1, 3
Offset: 5
Examples
For n = 8, prime(8) is 19. 109, 1009, and 10009 are all primes, while 100009 is not, thus a(8) = 4. For n = 30, prime(30) is 113. 1103 and 11003 are prime, while 110003 is not, thus a(30) = 3.
Programs
-
Mathematica
a[n_] := Module[{p = Prime[n], c = 1, q, r}, r = Mod[p, 10]; q = 10*(p - r); While[PrimeQ[q + r], q *= 10; c++]; c]; Array[a, 100, 5] (* Amiram Eldar, Nov 27 2022 *)
-
PARI
a(n) = n=prime(n); for(i=1,oo, isprime(n=10*n-n%10*9) || return(i)); \\ Kevin Ryde, Dec 08 2022
-
Python
from sympy import isprime, prime def a(n): s, c = str(prime(n)), 1 while isprime(int(s[:-1] + '0'*c + s[-1])): c += 1 return c print([a(n) for n in range(5, 92)]) # Michael S. Branicky, Nov 09 2022
Formula
If a(n) > 1 then a(pi(k)) = a(n) - 1 where k = 100*floor(p/10) + p mod 10 and p = prime(n) (i.e., k is the result when a single 0 is inserted to the left of the ones digit of p).
Comments