cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358318 For n >= 5, a(n) is the number of zeros that need to be inserted to the left of the ones digit of the n-th prime so that the result is composite.

Original entry on oeis.org

2, 2, 2, 4, 1, 1, 1, 2, 3, 1, 1, 3, 3, 2, 3, 5, 1, 2, 1, 3, 5, 1, 1, 1, 3, 3, 1, 3, 3, 1, 4, 1, 1, 1, 3, 1, 2, 2, 3, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 5, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 6, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 2, 1, 1, 1, 1, 3
Offset: 5

Views

Author

Rida Hamadani, Nov 09 2022

Keywords

Comments

Conjecture: the sequence is bounded.

Examples

			For n = 8, prime(8) is 19. 109, 1009, and 10009 are all primes, while 100009 is not, thus a(8) = 4.
For n = 30, prime(30) is 113. 1103 and 11003 are prime, while 110003 is not, thus a(30) = 3.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p = Prime[n], c = 1, q, r}, r = Mod[p, 10]; q = 10*(p - r); While[PrimeQ[q + r], q *= 10; c++]; c]; Array[a, 100, 5] (* Amiram Eldar, Nov 27 2022 *)
  • PARI
    a(n) = n=prime(n); for(i=1,oo, isprime(n=10*n-n%10*9) || return(i)); \\ Kevin Ryde, Dec 08 2022
  • Python
    from sympy import isprime, prime
    def a(n):
        s, c = str(prime(n)), 1
        while isprime(int(s[:-1] + '0'*c + s[-1])): c += 1
        return c
    print([a(n) for n in range(5, 92)]) # Michael S. Branicky, Nov 09 2022
    

Formula

If a(n) > 1 then a(pi(k)) = a(n) - 1 where k = 100*floor(p/10) + p mod 10 and p = prime(n) (i.e., k is the result when a single 0 is inserted to the left of the ones digit of p).