cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358322 Interlopers in sexy prime quadruples.

This page as a plain text file.
%I A358322 #13 Nov 10 2022 07:39:01
%S A358322 7,13,19,43,71,617,643,1093,1483,1489,1609,1871,1877,2381,2687,3919,
%T A358322 4003,5441,5651,5657,9463,11831,12109,14629,20357,21491,24107,26683,
%U A358322 26713,32059,37571,41957,42407,44533,50591,55217,65717,68899,70001,79813,87557,88811,88817,103993,110923,112573,122029
%N A358322 Interlopers in sexy prime quadruples.
%C A358322 Primes q !== p (mod 6) such that p < q < p+18, where (p, p+6, p+12, p+18) is a "sexy" prime quadruple, i.e., p is in A023271.
%H A358322 Robert Israel, <a href="/A358322/b358322.txt">Table of n, a(n) for n = 1..10000</a>
%e A358322 a(5) = 71 is a term because it is a prime !== 61 (mod 6) with 61 < 71 < 79, where (61, 67, 73, 79) is a sexy prime quadruple.
%p A358322 Res:= 7: count:= 1:
%p A358322 for p from 11 by 10 while count < 100 do
%p A358322   if andmap(isprime, [p, p+6, p+12, p+18]) then
%p A358322     R:= select(isprime, [p+2, p+8, p+10, p+16]);
%p A358322     count:= count + nops(R);
%p A358322     Res:= Res, op(R);
%p A358322   fi
%p A358322 od:
%p A358322 Res;
%Y A358322 Cf. A023271.
%K A358322 nonn
%O A358322 1,1
%A A358322 _J. M. Bergot_ and _Robert Israel_, Nov 09 2022