cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358332 Numbers whose prime indices have arithmetic and geometric mean differing by one.

This page as a plain text file.
%I A358332 #22 Mar 01 2025 08:37:36
%S A358332 57,228,1064,1150,1159,2405,3249,7991,29785,29999,30153,35378,51984,
%T A358332 82211,133931,185193,187039,232471,242592,374599,404225,431457,685207,
%U A358332 715129,927288,1132096,1165519,1322500,1343281,1555073,1872413,2016546,2873687,3468319,4266421,4327344
%N A358332 Numbers whose prime indices have arithmetic and geometric mean differing by one.
%C A358332 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%H A358332 Max Alekseyev, <a href="/A358332/b358332.txt">Table of n, a(n) for n = 1..1458</a>
%H A358332 Wikipedia, <a href="https://en.wikipedia.org/wiki/Geometric_mean">Geometric mean</a>
%e A358332 The terms together with their prime indices begin:
%e A358332       57: {2,8}
%e A358332      228: {1,1,2,8}
%e A358332     1064: {1,1,1,4,8}
%e A358332     1150: {1,3,3,9}
%e A358332     1159: {8,18}
%e A358332     2405: {3,6,12}
%e A358332     3249: {2,2,8,8}
%e A358332     7991: {18,32}
%e A358332    29785: {3,4,9,12}
%e A358332    29999: {32,50}
%e A358332    30153: {2,8,9,9}
%e A358332    35378: {1,4,4,8,8}
%e A358332    51984: {1,1,1,1,2,2,8,8}
%e A358332    82211: {50,72}
%e A358332   133931: {4,8,8,16}
%e A358332   185193: {2,2,2,8,8,8}
%e A358332   187039: {72,98}
%e A358332   232471: {12,18,27}
%t A358332 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A358332 Select[Range[10000],Mean[primeMS[#]]==1+GeometricMean[primeMS[#]]&]
%o A358332 (PARI) isok(k) = if (k>1, my(f=factor(k), vf=List()); for (i=1, #f~, for (j=1, f[i,2], listput(vf, primepi(f[i,1])))); my(v = Vec(vf)); vecsum(v)/#v == 1 + sqrtn(vecprod(v), #v);); \\ _Michel Marcus_, Nov 11 2022
%Y A358332 The partitions with these Heinz numbers are counted by A358331.
%Y A358332 A000040 lists the primes.
%Y A358332 A001222 counts prime indices, distinct A001221.
%Y A358332 A003963 multiplies together prime indices.
%Y A358332 A056239 adds up prime indices.
%Y A358332 A067538 counts partitions with integer average, ranked by A316413.
%Y A358332 A067539 counts partitions with integer geometric mean, ranked by A326623.
%Y A358332 A078175 lists numbers whose prime factors have integer average.
%Y A358332 A320322 counts partitions whose product is a perfect power.
%Y A358332 Cf. A000720, A051293, A111233, A215366, A289508, A289509, A326027, A326624, A326028, A326645, A357710.
%K A358332 nonn
%O A358332 1,1
%A A358332 _Gus Wiseman_, Nov 09 2022
%E A358332 More terms from _Michel Marcus_, Nov 11 2022