cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358336 Multiplicative sequence with a(p^e) = ((p-1) * (1 + e*(e+1)/2) + e) * p^(e-1) for prime p and e > 0.

Original entry on oeis.org

1, 3, 5, 12, 9, 15, 13, 40, 30, 27, 21, 60, 25, 39, 45, 120, 33, 90, 37, 108, 65, 63, 45, 200, 90, 75, 153, 156, 57, 135, 61, 336, 105, 99, 117, 360, 73, 111, 125, 360, 81, 195, 85, 252, 270, 135, 93, 600, 182, 270, 165, 300, 105, 459, 189, 520, 185, 171, 117, 540, 121, 183, 390, 896
Offset: 1

Views

Author

Werner Schulte, Nov 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := ((p - 1)*(1 + e*(e + 1)/2) + e)*p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 09 2022 *)
  • PARI
    a(n) = { my (f=factor(n), p, e, v=1); for (k=1, #f~, p=f[k,1]; e=f[k,2]; v *= ((p-1) * (1 + e*(e+1)/2) + e) * p^(e-1)); return (v) } \\ Rémy Sigrist, Jan 18 2023

Formula

a(n) = Sum_{k=1..n} gcd(k, n) * A005361(gcd(k, n)) for n > 0.
Equals Dirichlet convolution of A000010 and n * A005361.
Dirichlet g.f.: (zeta(s-1)^2 * zeta(2*s-2) * zeta(3*s-3)) / (zeta(s) * zeta(6*s-6)).
Equals Dirichlet convolution of A018804 and A112526.
Sum_{k=1..n} a(k) ~ (zeta(3)/(2*zeta(6))) * n^2 * (log(n) + 2*gamma - 1/2 + zeta'(2)/zeta(2) + 3*zeta'(3)/zeta(3) + 6*zeta'(6)/zeta(6)), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 13 2024