This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358343 #10 Nov 21 2022 09:50:04 %S A358343 213724201,336987901,791091901,1940820901,2454494551,2525191051, %T A358343 2675901751,3490984201,3571597951,3702692551,4045565851,4531570951, %U A358343 5698472701,5928161251,5953041001,6589503751,7073836201,7360771801,7811308951,8282895451,10242069451,11049315751,12392801251,13062696001 %N A358343 Primes p such that p + 6, p + 12, p + 18, (p+4)/5, (p+4)/5 + 6, (p+4)/5 + 12 and (p+4)/5 + 18 are also prime. %C A358343 Terms p of A023271 such that (p+4)/5 is also in A023271. %C A358343 All terms == 901 (mod 1050). %H A358343 Robert Israel, <a href="/A358343/b358343.txt">Table of n, a(n) for n = 1..213</a> %e A358343 a(3) = 791091901 is a term because p = 791091901, p + 6 = 791091907, p + 12 = 791091913, p + 18 = 791091919, (p+4)/5 = 158218381, (p+4)/5 + 6 = 158218387, (p+4)/5 + 12 = 158218393, and (p+4)/5 + 18 = 158218399 are all prime. %p A358343 filter:= p -> andmap(isprime, [p, p+6, p+12, p+18, (p+4)/5, (p+4)/5 + 6, %p A358343 (p+4)/5 + 12, (p+4)/5 + 18]): %p A358343 select(filter, [seq(p, p = 901 .. 2*10^10, 1050)]); %Y A358343 Cf. A023271. %K A358343 nonn %O A358343 1,1 %A A358343 _J. M. Bergot_ and _Robert Israel_, Nov 10 2022