cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358347 a(n) is the sum of the unitary divisors of n that are squares.

This page as a plain text file.
%I A358347 #20 Sep 09 2023 06:49:35
%S A358347 1,1,1,5,1,1,1,1,10,1,1,5,1,1,1,17,1,10,1,5,1,1,1,1,26,1,1,5,1,1,1,1,
%T A358347 1,1,1,50,1,1,1,1,1,1,1,5,10,1,1,17,50,26,1,5,1,1,1,1,1,1,1,5,1,1,10,
%U A358347 65,1,1,1,5,1,1,1,10,1,1,26,5,1,1,1,17,82,1
%N A358347 a(n) is the sum of the unitary divisors of n that are squares.
%C A358347 The number of unitary divisors of n that are squares is A056624(n).
%H A358347 Amiram Eldar, <a href="/A358347/b358347.txt">Table of n, a(n) for n = 1..10000</a>
%F A358347 a(n) >= 1 with equality if and only if n is an exponentially odd number (A268335).
%F A358347 Multiplicative with a(p^e) = p^e + 1 if e is even, and 1 otherwise.
%F A358347 a(n) = A034448(n)/A358346(n).
%F A358347 Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)/(3*zeta(5/2)) = 0.6491241554... .
%F A358347 Dirichlet g.f.: zeta(s)*zeta(2*s-2)/zeta(3*s-2). - _Amiram Eldar_, Jan 29 2023
%F A358347 a(n) = A034448(A350388(n)). - _Amiram Eldar_, Sep 09 2023
%t A358347 f[p_, e_] := If[OddQ[e], 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A358347 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, 1, f[i,1]^f[i,2] + 1));}
%Y A358347 Cf. A056624, A077610, A078434, A247041, A268335, A350388, A351568.
%Y A358347 Similar sequences: A033634, A034448, A035316, A358346.
%K A358347 nonn,easy,mult
%O A358347 1,4
%A A358347 _Amiram Eldar_, Nov 11 2022