cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358350 Numbers that can be written as (m + sum of digits of m + product of digits of m) for some m.

This page as a plain text file.
%I A358350 #33 Dec 19 2022 15:05:18
%S A358350 3,6,9,11,12,14,15,17,18,20,21,22,23,24,26,27,29,30,32,33,34,35,38,42,
%T A358350 43,44,46,48,50,53,54,55,56,58,62,63,66,68,69,73,74,76,77,78,80,82,83,
%U A358350 86,88,90,92,95,97,98,99,101,103,104,105,106,107,108,109,110
%N A358350 Numbers that can be written as (m + sum of digits of m + product of digits of m) for some m.
%C A358350 Integers that are in A161351.
%C A358350 (i) Can arbitrarily long sets of consecutive integers be found in this sequence?
%C A358350 (ii) Is the gap between two consecutive terms bounded?
%C A358350 A000533 \ {1} is a subsequence.
%C A358350 This has the same asymptotic density, approximately 0.9022222, as A176995, since the asymptotic density of non-pandigital numbers is 0. - _Charles R Greathouse IV_, Nov 16 2022
%H A358350 David A. Corneth, <a href="/A358350/b358350.txt">Table of n, a(n) for n = 1..10000</a>
%F A358350 a(n) ~ kn with k approximately 1.108374, see comments. - _Charles R Greathouse IV_, Nov 16 2022
%e A358350 A161351(23) = 23 + (2+3) + (2*3) = 34 so 34 is a term.
%e A358350 There is no integer du_10 such that du + (d+u) + (d*u) = 31, so 31 is not a term.
%t A358350 f[n_] := n + Total[(d = IntegerDigits[n])] + Times @@ d; With[{m = 110}, Select[Union[Table[f[n], {n, 1, m}]], # <= m &]] (* _Amiram Eldar_, Nov 11 2022 *)
%o A358350 (PARI) f(n) = my(d=digits(n)); n + vecsum(d) + vecprod(d); \\ A161351
%o A358350 lista(nn) = select(x->(x<=nn), Set(vector(nn, k, f(k)))); \\ _Michel Marcus_, Nov 12 2022
%o A358350 (Python)
%o A358350 from math import prod
%o A358350 def sp(n): d = list(map(int, str(n))); return sum(d) + prod(d)
%o A358350 def ok(n): return any(m + sp(m) == n for m in range(n))
%o A358350 print([k for k in range(111) if ok(k)]) # _Michael S. Branicky_, Dec 19 2022
%Y A358350 Range of A161351.
%Y A358350 Similar: A176995 (m+digitsum), A336826 (m*digitprod), A337718 (m+digitprod).
%Y A358350 Cf. A000533.
%K A358350 nonn,base
%O A358350 1,1
%A A358350 _Bernard Schott_, Nov 11 2022