A358354 a(n) = n for n <= 3. Thereafter a(n) is the least m such that rad(m) = rad(rad(a(n-3)) + rad(a(n-1))) where rad is A007947.
1, 2, 3, 4, 8, 5, 7, 9, 16, 27, 6, 32, 25, 11, 13, 12, 17, 30, 18, 23, 53, 59, 82, 15, 74, 78, 93, 167, 35, 64, 169, 24, 128, 45, 21, 529, 38, 3481, 164, 60, 89, 57, 87, 22, 79, 166, 94, 173, 339, 433, 606, 105, 538, 286, 391, 929, 75, 406, 1335, 90, 218, 1553
Offset: 1
Keywords
Examples
To find a(4): a(1)=1, a(3)=3 so a(4) is the least m such that rad(n) = rad(rad(1) + rad(3)) = rad(4) = 2. Since 2 has occurred already, a(4) = 4.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1000
- Michael De Vlieger, Annotated log log scatterplot of a(n), n = 1..256, showing primes in red, perfect prime powers in gold, squarefree composites in green, and numbers neither squarefree nor prime powers in blue and purple, where purple represents powerful numbers that are not prime powers.
Programs
-
Mathematica
Block[{a, c, f, i, j, k, m, p, q, s, nn}, nn = 62; c[] = False; p[] = q[] = 1; f[n] := Times @@ FactorInteger[n][[All, 1]]; Array[Set[{a[#], c[#]}, {#, True}] &, 3]; Array[(q[#]++; p[#]++) &[f[a[#]] ] &, 3]; Set[{i, j, k}, Array[f[a[#]] &, 3]]; Do[s = f[i + k]; If[PrimeQ[s], m = s^p[s]; p[s]++, m = q[s]; While[Nand[! c[m s], PowerMod[s, s, m] == 0], m++]; m *= s]; q[s]++; Set[{a[n], c[m], i, j, k}, {m, True, j, k, s}], {n, 4, nn}]; Array[a, nn] ] (* Michael De Vlieger, Nov 12 2022 *)
Comments