This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358367 #19 Jan 31 2024 07:21:20 %S A358367 1,12,192,3360,61440,1153152,22020096,425677824,8304721920, %T A358367 163176499200,3224446697472,64012657213440,1275708366127104, %U A358367 25506581874278400,511404848311173120,10278423735852072960,207016682596362878976,4177272328882468945920,84430333294202899660800 %N A358367 a(n) = 8^n * binomial(n * 3/2, n). %H A358367 Paolo Xausa, <a href="/A358367/b358367.txt">Table of n, a(n) for n = 0..750</a> %F A358367 a(n) ~ c*2^(2*n)*3^(3*n/2)/sqrt(n) where c = sqrt(3/(2*Pi)). - _Stefano Spezia_, Nov 14 2022 %p A358367 seq(8^n * binomial(n*3/2, n), n = 0..18); %t A358367 A358367[n_] := 8^n*Binomial[3/2*n, n]; %t A358367 Array[A358367, 20, 0] (* _Paolo Xausa_, Jan 31 2024 *) %o A358367 (Python) %o A358367 from sympy import binomial, S %o A358367 def A358367(n): return (1<<n*3)*binomial(3*S.Half*n,n) # _Chai Wah Wu_, Nov 14 2022 %o A358367 (PARI) a(n) = 8^n * binomial(n * 3/2, n); \\ _Michel Marcus_, Nov 15 2022 %K A358367 nonn %O A358367 0,2 %A A358367 _Peter Luschny_, Nov 14 2022