This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358369 #10 Nov 18 2022 18:17:26 %S A358369 1,1,3,5,12,20,43,73,146,250,475,813,1499,2555,4592,7800,13761,23253, %T A358369 40421,67963,116723,195291,332026,552882,932023,1544943,2585243, %U A358369 4267081,7094593,11662769,19281018,31575874,51937608,84753396,138772038,225693778,368017636 %N A358369 Euler transform of 2^floor(n/2), (A016116). %p A358369 BinaryRecurrenceSequence := proc(b, c, u0:=0, u1:=1) local u; %p A358369 u := proc(n) option remember; if n < 2 then return [u0, u1][n + 1] fi; %p A358369 b*u(n - 1) + c*u(n - 2) end; u end: %p A358369 EulerTransform := proc(a) local b; %p A358369 b := proc(n) option remember; if n = 0 then return 1 fi; add(add(d * a(d), %p A358369 d = NumberTheory:-Divisors(j)) * b(n-j), j = 1..n) / n end; b end: %p A358369 a := EulerTransform(BinaryRecurrenceSequence(0, 2, 1)): seq(a(n), n=0..36); %o A358369 (Sage) # uses[EulerTransform from A166861] %o A358369 b = BinaryRecurrenceSequence(0, 2, 1) %o A358369 a = EulerTransform(b) %o A358369 print([a(n) for n in range(37)]) %o A358369 (Python) %o A358369 from typing import Callable %o A358369 from functools import cache %o A358369 from sympy import divisors %o A358369 def BinaryRecurrenceSequence(b:int, c:int, u0:int=0, u1:int=1) -> Callable: %o A358369 @cache %o A358369 def u(n: int) -> int: %o A358369 if n < 2: %o A358369 return [u0, u1][n] %o A358369 return b * u(n - 1) + c * u(n - 2) %o A358369 return u %o A358369 def EulerTransform(a: Callable) -> Callable: %o A358369 @cache %o A358369 def b(n: int) -> int: %o A358369 if n == 0: %o A358369 return 1 %o A358369 s = sum(sum(d * a(d) for d in divisors(j)) * b(n - j) %o A358369 for j in range(1, n + 1)) %o A358369 return s // n %o A358369 return b %o A358369 b = BinaryRecurrenceSequence(0, 2, 1) %o A358369 a = EulerTransform(b) %o A358369 print([a(n) for n in range(37)]) %Y A358369 Cf. A002513, A016116. %Y A358369 Sequences that can be represented as a EulerTransform(BinaryRecurrenceSequence()) include A000009, A000041, A000712, A001970, A002513, A010054, A015128, A022567, A034691, A111317, A111335, A117410, A156224, A166861, A200544, A261031, A261329, A358449. %K A358369 nonn %O A358369 0,3 %A A358369 _Peter Luschny_, Nov 17 2022