A358371 Number of leaves in the n-th standard ordered rooted tree.
1, 1, 1, 2, 1, 2, 2, 3, 2, 2, 2, 3, 2, 3, 3, 4, 1, 3, 2, 3, 2, 3, 3, 4, 3, 3, 3, 4, 3, 4, 4, 5, 2, 2, 3, 4, 2, 3, 3, 4, 3, 3, 3, 4, 3, 4, 4, 5, 2, 4, 3, 4, 3, 4, 4, 5, 4, 4, 4, 5, 4, 5, 5, 6, 2, 3, 2, 3, 3, 4, 4, 5, 3, 3, 3, 4, 3, 4, 4, 5, 2, 4, 3, 4, 3, 4
Offset: 1
Keywords
Examples
The standard ordered rooted tree ranking begins: 1: o 10: (((o))o) 19: (((o))(o)) 2: (o) 11: ((o)(o)) 20: (((o))oo) 3: ((o)) 12: ((o)oo) 21: ((o)((o))) 4: (oo) 13: (o((o))) 22: ((o)(o)o) 5: (((o))) 14: (o(o)o) 23: ((o)o(o)) 6: ((o)o) 15: (oo(o)) 24: ((o)ooo) 7: (o(o)) 16: (oooo) 25: (o(oo)) 8: (ooo) 17: ((((o)))) 26: (o((o))o) 9: ((oo)) 18: ((oo)o) 27: (o(o)(o)) For example, the 25th ordered tree is (o,(o,o)) because the 24th composition is (1,4) and the 3rd composition is (1,1). Hence a(25) = 3.
Links
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; srt[n_]:=If[n==1,{},srt/@stc[n-1]]; Table[Count[srt[n],{},{0,Infinity}],{n,100}]
Comments