This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358372 #5 Nov 14 2022 15:38:01 %S A358372 1,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,5,6,6,6,6,6,6,6,5,6, %T A358372 6,6,7,7,7,7,6,7,7,7,7,7,7,7,6,6,7,7,7,7,7,7,6,7,7,7,7,7,7,7,5,6,7,7, %U A358372 7,7,7,7,7,8,8,8,8,8,8,8,7,7,8,8,8,8,8 %N A358372 Number of nodes in the n-th standard ordered rooted tree. %C A358372 We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees. %H A358372 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A358372 The standard ordered rooted tree ranking begins: %e A358372 1: o 10: (((o))o) 19: (((o))(o)) %e A358372 2: (o) 11: ((o)(o)) 20: (((o))oo) %e A358372 3: ((o)) 12: ((o)oo) 21: ((o)((o))) %e A358372 4: (oo) 13: (o((o))) 22: ((o)(o)o) %e A358372 5: (((o))) 14: (o(o)o) 23: ((o)o(o)) %e A358372 6: ((o)o) 15: (oo(o)) 24: ((o)ooo) %e A358372 7: (o(o)) 16: (oooo) 25: (o(oo)) %e A358372 8: (ooo) 17: ((((o)))) 26: (o((o))o) %e A358372 9: ((oo)) 18: ((oo)o) 27: (o(o)(o)) %e A358372 For example, the 25th ordered tree is (o,(o,o)) because the 24th composition is (1,4) and the 3rd composition is (1,1). Hence a(25) = 5. %t A358372 stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A358372 srt[n_]:=If[n==1,{},srt/@stc[n-1]]; %t A358372 Table[Count[srt[n],_,{0,Infinity}],{n,100}] %Y A358372 The triangle counting trees by leaves is A001263, unordered A055277. %Y A358372 The version for unordered trees is A061775, leaves A109129, edges A196050. %Y A358372 The leaves are counted by A358371. %Y A358372 A000081 counts unlabeled rooted trees, ranked by A358378. %Y A358372 A358374 ranks ordered identity trees, counted by A032027. %Y A358372 A358375 ranks ordered binary trees, counted by A126120 %Y A358372 Cf. A001678, A004249, A005043, A063895, A284778, A358373, A358376, A358377. %K A358372 nonn %O A358372 1,2 %A A358372 _Gus Wiseman_, Nov 14 2022