This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358374 #5 Nov 14 2022 20:01:14 %S A358374 1,2,3,5,6,7,10,13,17,19,21,33,34,38,39,42,45,49,51,53,65,66,67,81,97, %T A358374 130,131,133,134,135,145,161,162,177,193,195,209,259,261,262,263,266, %U A358374 269,289,290,305,321,322,353,387,389,401,417,513,517,518,519,522 %N A358374 Numbers k such that the k-th standard ordered rooted tree is an identity tree (counted by A032027). %C A358374 We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees. %C A358374 A rooted identity tree is an unlabeled rooted tree with no repeated branches directly under the same root. %H A358374 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A358374 The terms together with their corresponding ordered rooted trees begin: %e A358374 1: o %e A358374 2: (o) %e A358374 3: ((o)) %e A358374 5: (((o))) %e A358374 6: ((o)o) %e A358374 7: (o(o)) %e A358374 10: (((o))o) %e A358374 13: (o((o))) %e A358374 17: ((((o)))) %e A358374 19: (((o))(o)) %e A358374 21: ((o)((o))) %e A358374 33: (((o)o)) %e A358374 34: ((((o)))o) %e A358374 38: (((o))(o)o) %e A358374 39: (((o))o(o)) %e A358374 42: ((o)((o))o) %e A358374 45: ((o)o((o))) %t A358374 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A358374 srt[n_]:=If[n==1,{},srt/@stc[n-1]]; %t A358374 Select[Range[100],FreeQ[srt[#],_[__]?(!UnsameQ@@#&)]&] %Y A358374 These trees are counted by A032027. %Y A358374 The unordered version is A276625, counted by A004111. %Y A358374 A000081 counts unlabeled rooted trees, ranked by A358378. %Y A358374 A358371 and A358372 count leaves and nodes in standard ordered rooted trees. %Y A358374 A358375 ranks ordered binary trees, counted by A126120. %Y A358374 Cf. A001263, A004249, A005043, A063895, A358373, A358376, A358377. %K A358374 nonn %O A358374 1,2 %A A358374 _Gus Wiseman_, Nov 14 2022