This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358376 #8 Nov 14 2022 20:00:52 %S A358376 1,4,8,16,18,25,32,36,50,57,64,72,100,114,121,128,137,144,200,228,242, %T A358376 249,256,258,274,281,288,385,393,400,456,484,498,505,512,516,548,562, %U A358376 569,576,770,786,793,800,897,905,912,968,996,1010,1017,1024,1032,1096 %N A358376 Numbers k such that the k-th standard ordered rooted tree is lone-child-avoiding (counted by A005043). %C A358376 We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees. %H A358376 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A358376 The initial terms and their corresponding trees: %e A358376 1: o %e A358376 4: (oo) %e A358376 8: (ooo) %e A358376 16: (oooo) %e A358376 18: ((oo)o) %e A358376 25: (o(oo)) %e A358376 32: (ooooo) %e A358376 36: ((oo)oo) %e A358376 50: (o(oo)o) %e A358376 57: (oo(oo)) %e A358376 64: (oooooo) %e A358376 72: ((oo)ooo) %e A358376 100: (o(oo)oo) %e A358376 114: (oo(oo)o) %e A358376 121: (ooo(oo)) %e A358376 128: (ooooooo) %e A358376 137: ((oo)(oo)) %e A358376 144: ((oo)oooo) %e A358376 200: (o(oo)ooo) %t A358376 stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A358376 srt[n_]:=If[n==1,{},srt/@stc[n-1]]; %t A358376 Select[Range[100],FreeQ[srt[#],_[__]?(Length[#]==1&)]&] %Y A358376 These trees are counted by A005043. %Y A358376 The series-reduced case appears to be counted by A284778. %Y A358376 The unordered version is A291636, counted by A001678. %Y A358376 A000081 counts unlabeled rooted trees, ranked by A358378. %Y A358376 A358371 and A358372 count leaves and nodes in standard ordered rooted trees. %Y A358376 A358374 ranks ordered identity trees, counted by A032027. %Y A358376 A358375 ranks ordered binary trees, counted by A126120. %Y A358376 Cf. A000014, A001263, A001679, A004249, A061775, A063895, A187306, A331489, A331490, A331934, A358373, A358377. %K A358376 nonn %O A358376 1,2 %A A358376 _Gus Wiseman_, Nov 14 2022