This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358377 #5 Nov 14 2022 20:00:41 %S A358377 1,2,3,4,5,8,9,11,16,17,32,37,43,64,128,129,137,171,256,257,293,512, %T A358377 529,683,1024,1025,2048,2185,2341,2731,4096,8192,10923,16384,16913, %U A358377 18725,32768,32769,32897,34953,43691,65536,65537,131072,131329,149797,174763 %N A358377 Numbers k such that the k-th standard ordered rooted tree is a generalized Bethe tree (counted by A003238). %C A358377 We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees. %C A358377 A generalized Bethe tree is an unlabeled rooted tree where all branches directly under the same root are equal. %H A358377 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A358377 The terms together with their corresponding ordered rooted trees begin: %e A358377 1: o %e A358377 2: (o) %e A358377 3: ((o)) %e A358377 4: (oo) %e A358377 5: (((o))) %e A358377 8: (ooo) %e A358377 9: ((oo)) %e A358377 11: ((o)(o)) %e A358377 16: (oooo) %e A358377 17: ((((o)))) %e A358377 32: (ooooo) %e A358377 37: (((o))((o))) %e A358377 43: ((o)(o)(o)) %e A358377 64: (oooooo) %e A358377 128: (ooooooo) %e A358377 129: ((ooo)) %e A358377 137: ((oo)(oo)) %e A358377 171: ((o)(o)(o)(o)) %t A358377 stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A358377 srt[n_]:=If[n==1,{},srt/@stc[n-1]]; %t A358377 Select[Range[1000],FreeQ[srt[#],_[__]?(!SameQ@@#&)]&] %Y A358377 These trees are counted by A003238. %Y A358377 The unordered version is A214577, also counted by A003238. %Y A358377 A000081 counts unlabeled rooted trees, ranked by A358378. %Y A358377 A358371 and A358372 count leaves and nodes in standard ordered rooted trees. %Y A358377 A358374 ranks ordered identity trees, counted by A032027. %Y A358377 Cf. A001263, A004111, A004249, A005043, A063895, A276625, A331490, A358373, A358375, A358376. %K A358377 nonn %O A358377 1,2 %A A358377 _Gus Wiseman_, Nov 14 2022